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Cook – Levin 
theorem (1971): 
SAT problem 
is NP complete 

Computational Complexity Classes 

Quantum algorithms for NP complete problems ?
Circuit quantum computer - no good ideas
Adiabatic quantum computer - promising
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Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
“Quantum computation by adiabatic evolution”, 2000. arXiv:quant-ph/0001106.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew 
Lundgren, and Daniel Preda. “A quantum adiabatic evolution algorithm applied to 
random instances of an NP-complete problem”. Science, 292:472–475, 2001.

Adiabatic quantum optimization

• Total time T (slower is better)
• Gap ∆(t) (larger gap is better)

Slowly varying        
→ system stays at 
the ground state

( )Ĥ t

Probability of excitation 
depends on:

Probability to stay 
in the ground state

2
min

T
∆

∝



Problem: 
Find minimum of 
a function  f(x)

1.Choose initial Hamiltonian H0 with known 
ground state

2. Change Hamiltonian to HP “matching” f(x)

T large enough  ⇒ measuring reveals the minimum

( ) 0
0

ˆ 0ˆ ˆ ˆ1 ˆp
p

H tt tH t H H
T T H t T

= = − + = 
= 

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
“Quantum computation by adiabatic evolution”, 2000. arXiv:quant-ph/0001106.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew 
Lundgren, and Daniel Preda. “A quantum adiabatic evolution algorithm applied to 
random instances of an NP-complete problem”. Science, 292:472–475, 2001.

Adiabatic quantum optimization



How powerful is it?
• It is quantum! Unstructured search in time      (cf Grover)

• It is universal for quantum computation
[vanDam-Mosca-Vazirani'01,Roland-Cerf'02]

[Aharonov et al.'05]

Good, but what about NP-complete problems?

• Numerical simulations: promising scaling
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How powerful is it?
• It is quantum! Unstructured search in time      (cf Grover)

• It is universal for quantum computation
[vanDam-Mosca-Vazirani'01,Roland-Cerf'02]

[Aharonov et al.'05]

• But exponentially small gap

• for specifically designed hard instances
[Znidaric-Horvat'06,Farhi et al.'08]

[vanDam-Vazirani'03,Reichardt'04]

But maybe typical gaps are only polynomial?

Good, but what about NP-complete problems?

• Numerical simulations: promising scaling
[Farhi et al.'00,Hogg'03,Banyuls et al.'04,Young et al.'08]

• for bad choice of initial Hamiltonian



1 in 3 SAT = exact cover problem

1,2,...,i N=
1iσ = ±bits

laterals
Ising spins 1,2,...,

1 , ,c c c

c M
i j k N

=
≤ ≤

{ }, ,c c ci j kclausesN M

Clause c is satisfied
if one of the three 
spins is down and 
other two are up

or

or

Otherwise the clause is not satisfied

Task: to satisfy all M clauses

Definition
, 11 1,

c c ci j kσ σ σ= − = =

1 1, , 1
c c ci j kσ σ σ= = =−

1, , 11
c c ci j kσ σ σ= = −=



1,2,...,i N=
1iσ = ±bits

laterals
Ising spins 1,2,...,c M=

{ }, ,c c ci j kclausesN M
Clause c is satisfied if one of 
the three spins is down and 
other two are up. Otherwise 
the clause is not satisfied

Task:
to satisfy all M clauses

Important: 
We will considering ensemble of randomly 
selected clauses, not some families of 
artificially designed instances 

1 in 3 SAT = exact cover 3 (EC3) problem



1,2,...,i N=
1iσ = ±bits

laterals
Ising spins 1,2,...,c M=

{ }, ,c c ci j kclausesN M
Clause c is satisfied if one of 
the three spins is down and 
other two are up. Otherwise 
the clause is not satisfied

Task:
to satisfy all M clauses

Size of 
the 
problem: 

, , MN M
N

α→∞ →∞ →

α
No 

solutions
Few 

solutionsMany 
solutions

cα sα0

Clusters of 
the solutions

1 in 3 SAT = exact cover 3 (EC3) problem

Easy Hard Very 
hard



1,2,...,i N=
1iσ = ±bits

laterals
Ising spins 1,2,...,c M=

{ }, ,c c ci j kclausesN M

, , MN M
N

α→∞ →∞ →

clustering 
threshold 

satisfiability 
threshold cα sα 0.546 < 0.644sα <

α
No 

solutions
Few 

solutionsMany 
solutions

cα sα0

Clusters of 
the solutions

Easy Hard Very 
hard

J. Raymond, A. Sportiello, & L. Zdeborova, 
Physical Review E 76, 011101 (2007).



( )2
, 1, 1

1, , 1 1 0

1, 1,

1

1

1

c c c

c c c c c c

c c c

i j k

i j k i j k

i j k

σ σ σ

σ σ σ σ σ σ

σ σ σ

 = = =
 

= = = ⇔ + + − = 
 = =

−

−

= − 

( )2

1 1

1
4 4 4 2

c c c
M N

i j k iji
p i i j

c i i j

JM BH
σ σ σ

σ σ σ
= = ≠

+ + −
= = − +∑ ∑ ∑

Otherwise ( )2
1 0

c c ci j kσ σ σ+ + − >

Solutions      and only solutions are zero 
energy ground states of the Hamiltonian 

{ }iσ

Bi – number of clauses, which involve spin i
Jij – number of clauses, where both i and j participate        



( )

{ }( )

2

1 1

0
1

1
4 4 4 2

ˆˆ ˆ

c c c
M N

i j k iji
p i i j

c i i j

N
x

i i
i

JM BH

H

σ σ σ
σ σ σ

σ σ

= = ≠

=

+ + −
= = − +

=

∑ ∑ ∑

∑

Adiabatic Algorithm for EC3
Recipe: 1.Construct the Hamiltonian

2.Slowly change adiabatic parameter s from 0 to 1
{ }( ) { }( ) ( ) { }( )0

ˆ ˆˆ ˆ ˆ 1z
s i p i iH sH s Hσ σ σ= + −

 

{ }( ) { }( ) { }( )0
1ˆ ˆˆ ˆ ˆ ;z

i p i i
s T tH H H

s tλ σ σ λ σ λ − −
= + = =

 

∞0 λ



( ) { }( )
2

0
1 1 1

ˆ ˆ ˆ 1 ˆˆˆ ˆ ˆ ˆ;
4 4 4 2

c c c

z z zM N N
i j k ijz z z xi

p ii ii j i i
c i i j i

JM BH H
σ σ σ

σ σ σ σ σ
= = ≠ =

+ + −
= = − + =∑ ∑ ∑ ∑

{ }( ) { }( ) { }( )0
1ˆ ˆˆ ˆ ˆ ;z

i p i i
sH H H

sλ σ σ λ σ λ −
= + =

 

Ising model (determined on a graph ) in a random 
parallel and a uniform perpendicular field λ

Adiabatic Algorithm for EC3



determines a site of N-dimensional hypercube

( ) { }( )2

0
1 1 1

ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 ;
c c c

M N N
z z z z z z x

p i j k i i ij i j i i
c i i j i

H B J Hσ σ σ σ σ σ σ σ
= = ≠ =

= + + − = + =∑ ∑ ∑ ∑

{ }( ) { }( ) { }( )0
1ˆ ˆˆ ˆ ˆ ;z

i p i i
sH H H

sλ σ σ λ σ λ −
= + =

 

Another way of thinking:

{ }iσ

{ }( )p iH σ
onsite energy

{ }( )0
1

ˆˆ ˆ ˆ ˆ ˆ
N

x x
i i

i
Hλ σ λ σ σ σ σ+ −

=

= = +∑

hoping between nearest neighbors

Adiabatic Algorithm for exact cover



The simplest example:

}3 qubits 
1 clause  ⇒ 3d cube, 3 solutions

( )1,1,1

( )1,1, 1−

( )1,1,1−

( )1, 1,1− −
( )1, 1,1−

( )1, 1, 1− − −

( )1,1, 1− −

( )1, 1, 1− −

1ε =

1ε =

1ε =

1ε =

4ε =



determines a site of N-dimensional hypercube

( ) { }( )2

0
1 1 1

ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 ;
c c c

M N N
z z z z z z x

p i j k i i ij i j i i
c i i j i

H B J Hσ σ σ σ σ σ σ σ
= = ≠ =

= + + − = + =∑ ∑ ∑ ∑

{ }( ) { }( ) { }( )0
1ˆ ˆˆ ˆ ˆ ;z

i p i i
sH H H

sλ σ σ λ σ λ −
= + =

 

Another way of thinking:

{ }iσ

{ }( )p iH σ
onsite energy

{ }( )0
1

ˆˆ ˆ ˆ ˆ ˆ
N

x x
i i

i
Hλ σ λ σ σ σ σ+ −

=

= = +∑

hoping between nearest neighbors

Adiabatic Algorithm for exact cover

Anderson model for Localization on N-dimensional cube



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij ={ I   i and j are nearest 
neighbors

0 otherwise
-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ζloc

Metal
There appear states extended

all over the whole system

Anderson  Transition



extended

localized



0
ˆ ˆ ˆH H V= +

Conventional Anderson Model

Basis: ,i i

∑=
i

i iiH ε0
ˆ ∑

=

=
..,

ˆ
nnji

jiIV

Hamiltonian:

•one “particle”,
•one level per site, 
•onsite disorder
•nearest neighbor hoping

labels 
sites



( ) { }( )2

0
1 1 1

ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 ;
c c c

M N N
z z z z z z x

p i j k i i ij i j i i
c i i j i

H B J Hσ σ σ σ σ σ σ σ
= = ≠ =

= + + − = + =∑ ∑ ∑ ∑

Adiabatic Quantum Algorithm for 1 in 3 SAT 

{ }( ) { }( ) { }( )0
1ˆ ˆˆ ˆ ˆ ;z

i p i i
sH H H

sλ σ σ λ σ λ −
= + =

 

Anderson Model on N-dimensional cube
Usually:
# of dimensions 
system linear size

d const→
L →∞

Here:
# of dimensions 
system linear size

d N= →∞
1L =



6-dimensional cube 9-dimensional cube



∞0
λ

extendedlocalized

cλ

{ }( ) { }( ) { }( )0
ˆ ˆˆ ˆ ˆ z

i p i iH H Hλ σ σ λ σ= +
 



Disorder W

Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

1~ λ−

Avoided 
crossing 
gaps

•extended large
•localized small



Significant
amplitude

Exponentially
small amplitude

Adiabatic transition:
1. Extended states – can be performed quickly

2. Localized states – need exponentially long time
Otherwise – nonadiabatic 
Landau-Zienner transition

λ λ< λ λ> 



Localized 
states 

Exponentially 
long tunneling 

times 

Exponentially 
small anticrossing 

gaps 



localized extended

1) Anderson localization would imply

As the size of the problem N increases

2) Anti-crossings between solutions and  
not-solutions – as long as   exceeds  

we haveFor

The algorithm fails (stuck in a local minimum)

Our 
result:

λ
en

er
gy

λ∗cλ

( )1 logc Nλ = Ω

λ ( ) 1 8CNλ −
∗ ≈

( ) 18
cN Cλ

−
> cλ λ∗ <



{ }( ) { }( ) { }( )0
ˆ ˆˆ ˆ ˆ z

i p i iH H Hλ σ σ λ σ= +
 

2
1

Eδ
1

0

E

λ

3. Let us add one more clause, which 
is satisfied by    but not by  1 0

When           the gaps decrease 
even quicker than exponentially 

N →∞

2. For α is close to αs there typically 
are several  solutions separated by 
distances        .  Consider two.

1. Hamiltonian             is integrable: 
it commutes with all    . Its states 
thus can be degenerated. These 
degeneracies should split at finite 
λ since            is non-integrable

{ }( )ˆ ˆ z
p iH σ

ˆ z
iσ

{ }( )ˆˆ
iHλ σ

( )O N



1

0

E

λ

0⇒

1⇒

{ }( ) { }( ) { }( )0
ˆ ˆˆ ˆ ˆ z

i p i iH H Hλ σ σ λ σ= +
 

When           the gaps decrease 
even quicker than exponentially 

N →∞

3. Let us add one more clause, which 
is satisfied by    but not by  1 0

1. Hamiltonian             is integrable: 
it commutes with all    . Its states 
thus can be degenerated. These 
degeneracies should be split by 
finite λ in non-integrable  

2. For α is close to αs there typically 
are several  solutions separated by 
distances        .  Consider two.

{ }( )ˆ ˆ z
p iH σ

ˆ z
iσ

{ }( )ˆˆ
iHλ σ

2
1

( )O N



2
1

1

0

E

λ

0⇒

1⇒

2
1

Eδ
1

0

E

λ

Q1: Is the splitting       big enough for      to 
remain the ground state at large

Eδ 0
λ ?

Q2: How big would be the anticrossing gap?



( ) ( )2k
k

k
E N C α
α λ λ= ∑

Q1: Is the splitting       big enough for      to 
remain the ground state at large

Eδ 0
λ ?

Perturbation theory in λ

N
M const
N

α

→∞

→ = } ( )E Nα λ ∝ Cluster expansion:  
~N terms of order 1

1.     is exactly the same for all                 states, 
i.e. for all solutions. In the leading order 
( )
1C α ( )0 0Eα λ = =

4Eδ λ∝
2. In each order of the perturbation theory     a sum 

of        terms with random signs.
Eδ

( )O N
In the leading 
order in λ 4E Nδ λ∝



( ) 2 4 6
4 6

4 6

, ...

, ,...

E N

N

δ λ λ δ λ δ

δ δ

  = + + 
∝

4δ 6δ



Numerical Simulations



( ) ( ) 1 81E CNδ λ λ −≥ ⇒ ≥

In the leading 
order in λ

4E Nδ λ∝

Q1:
Is the splitting       
big enough for    to 
remain the ground 
state at finite

Eδ
0

λ
?

Q1.1: How big is the interval in    , where 
perturbation theory is valid

λ ?

{ }( ) { }( )
{ }( )0

ˆˆ ˆ ˆ

ˆ

z
i p i

i

H H

H

λ σ σ

λ σ

=

+







Q1.1: How big is the interval in    , where 
perturbation theory is valid

λ ?
A1.1:1.Perturbation theory = locator expansion works 

as long as          -Anderson localization !cλ λ<



Cayley tree

Anderson model
W,I

K – branching #

#
lnc
WI

K K
=



≈

Q1.1: How big is the interval in    , where 
perturbation theory is valid

λ ?

2.N-dimensional cube Cayley tree with 
brunching number K=N.

no loopsalmost no loops

3. Abou-Chacra, Anderson, Thouless;  PRL, 1973
1#

ln lnc c
WI O

K K N
λ  = ⇒ =  

 
first extended 
state appears

A1.1:1.Perturbation theory = locator expansion works 
as long as          -Anderson localization !cλ λ<



1#
ln lnc c
WI O

K K N
λ  = ⇒ =  

 
first extended state appears, i.e. 

it is a strong underestimation

( )1 81
lnc O O N

N
λ λ −

∗
 = >> = 
 

Important:

Perturbation theory 
is valid starting with  λ λ∗>>

A1.1:1.Perturbation theory = locator expansion works 
as long as          -Anderson localization !cλ λ<



Q2:How big is the 
anticrossing gap ?

( )
#

#
1 8

~
~ exp # ln

~ #

N
NE

E N N e
N

δ λ
δ

λ
−

−

 
⇒ − << 

 
Adiabatic quantum computer 
badly fails at large enough N

4~ 10N N ∗>cλ λ<

Existing classical algorithms for solving 1 
in 3 SAT problem work for  ( ) 33 4 10N < ÷ ×



The arguments are robust:

{ }( )p iH σ onsite energy

{ }( )0
ˆˆ

iH σ hoping between the 
neighboring sites of 
the hypercube

N-dimensional hypercube }Correct for any 
Adiabatic optimization 
scheme for any problem

This is not necessary !

For Anderson Localization it is sufficient that     
is local, i.e. contains only products of 

finite number of spins. Under this condition 
the arguments are valid for any adiabatic 
path in the Hamiltonian space  

{ }( )0
ˆˆ

iH σ



Sergey Knysh and Vadim Smelyanskiy 
“On the relevance of avoided crossings away from quantum 
critical point to the complexity of quantum adiabatic algorithm”, 
arXiv:1005.3011v1[quant-ph] 

•Away from αs the number of solutions is 
exponential:

• For a typical solution

• However the minimum over S0 solutions

• # of states with energy 1 is 

• Energy difference between the     
true ground state and the E=1 state at 
finite λ is 

( )0 ~ exp 0
s

S N α αη η → −→

( )2 8~E E Nλ−

( )2 8 8 2
min 0~ log ~E E N S Nλ ηλ−

1 0~S NS

( )1 4 1 2
min min ~ 1 logE E O Nλ η−− − +

( ) 1 4 1 8log Nλ η−
∗>



( ) 1 4 1 8log Nλ η−
∗>

Formally small in the                
limit, but …

, 1N η→∞ <<

Moreover:
1.Under reasonable restrictions on the allowed 

sequences  a typical sequence in the ensemble can 
have few solutions or even a unique one and be at 
the same time hard to solve.
Zdeborova & Mezard, 2008,
Krzakala & Zdeborova,2009
Zdeborova to be published

However the exponentially small 
gap requires only that λ is small



( ) 1 4 1 8log Nλ η−
∗>

Formally small in the                
limit, but …

, 1N η→∞ <<

Moreover:
2. Upper bound: given the evolution time T the state of 

the system would be a linear combination of low 
energy eigenstates separated by more than log T.
Number of “attempts” is thus ~T rather than 
exp(ηN). Provided that               we return to 
more or less previous estimation.  

log 0T N →

However the exponentially small 
gap requires only that λ is small



Conclusion Original idea of adiabatic 
quantum computation will 
not work

Hopes •Sampling different trajectories?
Farhi, Goldstone, Gosset, Gutmann, Meyer, & Shor, 
arXiv:1004.5127

•Maybe the delocalized ground state 
at finite λ contains information that 
can speed up the classical algorithm?

•Large number of the solutions?

•Probability to find a solution.

•. . .
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