Adiabatic Quantum Algorithms for the NP-Complete MIS, Exact Cover and 3SAT Problems

Vicky Choi

Department of Computer Science Virginia Tech Falls Church, VA

July 23, 2010

修德講學

1/50

イロト イボト イヨト イヨト

Outline

- 1 NP-Complete Problems: Exact Cover, MIS, Positive 1-in-3SAT
- 2 Adiabatic Quantum Algorithm
- 3 Two Adiabatic Algorithms for EC3
 - Clause-violation based
 - MIS-based

Outline

1 NP-Complete Problems: Exact Cover, MIS, Positive 1-in-3SAT

2 Adiabatic Quantum Algorithm

Two Adiabatic Algorithms for EC3
 Clause-violation based

MIS-based

Avoid FQPT: Change Problem Hamiltonian

Exact Cover

- Input: A set of *m* elements, $X = \{c_1, c_2, \dots, c_m\}$, a family of *n* subsets of *X*, $S = \{S_1, S_2, \dots, S_n\}$, where $S_i \subset X$
- Question: Is there an exact cover of X? That is, is there a subset I ⊆ {1,..., n} such that ∪_{i∈I}S_i = X, where S_i ∩ S_j = Ø for i ≠ j ∈ I?

Exact Cover

- Input: A set of *m* elements, $X = \{c_1, c_2, \dots, c_m\}$, a family of *n* subsets of *X*, $S = \{S_1, S_2, \dots, S_n\}$, where $S_i \subset X$
- Question: Is there an exact cover of X? That is, is there a subset I ⊆ {1,..., n} such that ∪_{i∈I}S_i = X, where S_i ∩ S_j = Ø for i ≠ j ∈ I?

Exact Cover

- Input: A set of *m* elements, $X = \{c_1, c_2, \dots, c_m\}$, a family of *n* subsets of *X*, $S = \{S_1, S_2, \dots, S_n\}$, where $S_i \subset X$
- Question: Is there an exact cover of X? That is, is there a subset I ⊆ {1,..., n} such that ∪_{i∈I}S_i = X, where S_i ∩ S_j = Ø for i ≠ j ∈ I?

Exact Cover

- Input: A set of *m* elements, $X = \{c_1, c_2, \dots, c_m\}$, a family of *n* subsets of *X*, $S = \{S_1, S_2, \dots, S_n\}$, where $S_i \subset X$
- Question: Is there an exact cover of X? That is, is there a subset I ⊆ {1,..., n} such that ∪_{i∈I}S_i = X, where S_i ∩ S_j = Ø for i ≠ j ∈ I?

Maximum-weight Independent Set Problem

- Input: A graph G(= (V(G), E(G))), B_i is the weight of vertex i ∈ V(G)
- Output: A subset S ⊆ V(G) such that S is independent and the total weight of S (= ∑_{i∈S} B_i) is maximized.

independent: for $i, j \in mis(G)$, $ij \notin E(G)$

Positive 1-in-3SAT

- Input: A 3CNF boolean formula $\Psi(x_1, \ldots, x_n) = C_1 \land \ldots \land C_m$, *n* variables $x_i \in \{0, 1\}$ and *m* clauses C_k
- **Question:** Is there an assignment such that there is exactly one variable in each clause is true?

Example

$$\Psi(x_1,\ldots,x_7)=C_1\wedge C_2\wedge C_3\wedge C_4\wedge C_5$$

•
$$C_1 = x_1 \lor x_2 \lor x_3$$
, $C_2 = x_1 \lor x_2 \lor x_4$, $C_3 = x_3 \lor x_4 \lor x_5$

ヘロト 人間 とくほ とくほ とう

•
$$C_4 = x_1 \lor x_3 \lor x_6$$
, $C_5 = x_2 \lor x_6 \lor x_7$

Positive 1-in-3SAT

- Input: A 3CNF boolean formula $\Psi(x_1, \ldots, x_n) = C_1 \land \ldots \land C_m$, *n* variables $x_i \in \{0, 1\}$ and *m* clauses C_k
- **Question:** Is there an assignment such that there is exactly one variable in each clause is true?

イロト 不得 とうせい かけとう

Example

$$\Psi(x_1, \dots, x_7) = C_1 \land C_2 \land C_3 \land C_4 \land C_5$$

• $C_1 = x_1 \lor x_2 \lor x_3, C_2 = x_1 \lor x_2 \lor x_4, C_3 = x_3 \lor x_4 \lor x_5$
• $C_4 = x_1 \lor x_3 \lor x_6, C_5 = x_2 \lor x_6 \lor x_7$
 $x_1 = x_5 = x_7 = 1$

EC3: A Special Case of Exact Cover

Recall: Exact Cover

Input: A set of *m* elements, $X = \{c_1, c_2, ..., c_m\}$, a family of *n* subsets of *X*, $S = \{S_1, S_2, ..., S_n\}$, where $S_i \subset X$ **Question:** Is there an exact cover of *X*?

EC3: each element $c_i \in X$ appears exactly in three subsets

EC3: A Special Case of Exact Cover

Recall: Exact Cover

Input: A set of *m* elements, $X = \{c_1, c_2, ..., c_m\}$, a family of *n* subsets of *X*, $S = \{S_1, S_2, ..., S_n\}$, where $S_i \subset X$ **Question:** Is there an exact cover of *X*?

EC3: each element $c_i \in X$ appears exactly in three subsets

Example (Positive 1-in-3SAT \leq_P EC3 \leq_P MIS)

•
$$\Psi(x_1, ..., x_7) = C_1 \land C_2 \land C_3 \land C_4 \land C_5$$
 where
 $C_1 = x_1 \lor x_2 \lor x_3, \ C_2 = x_1 \lor x_2 \lor x_4, \ C_3 = x_3 \lor x_4 \lor x_5$
 $C_4 = x_1 \lor x_3 \lor x_6, \ C_5 = x_2 \lor x_6 \lor x_7$

• For each variable x_i , let S_i be the set consisting of all clauses in which x_i appears: e.g. $S_1 = \{C_1, C_2, C_4\}$

Example (Positive 1-in-3SAT \leq_P EC3 \leq_P MIS)

•
$$\Psi(x_1, ..., x_7) = C_1 \land C_2 \land C_3 \land C_4 \land C_5$$
 where
 $C_1 = x_1 \lor x_2 \lor x_3, C_2 = x_1 \lor x_2 \lor x_4, C_3 = x_3 \lor x_4 \lor x_5$
 $C_4 = x_1 \lor x_3 \lor x_6, C_5 = x_2 \lor x_6 \lor x_7$

For each variable x_i, let S_i be the set consisting of all clauses in which x_i appears: e.g. S₁ = {C₁, C₂, C₄}
X: ● ● ● ● ● ● ●

イロト イヨト イヨト

Example (Positive 1-in-3SAT \leq_P EC3 \leq_P MIS)

•
$$\Psi(x_1, ..., x_7) = C_1 \land C_2 \land C_3 \land C_4 \land C_5$$
 where
 $C_1 = x_1 \lor x_2 \lor x_3, \ C_2 = x_1 \lor x_2 \lor x_4, \ C_3 = x_3 \lor x_4 \lor x_5$
 $C_4 = x_1 \lor x_3 \lor x_6, \ C_5 = x_2 \lor x_6 \lor x_7$

For each variable x_i, let S_i be the set consisting of all clauses in which x_i appears: e.g. S₁ = {C₁, C₂, C₄}
X: ● ● ● ● ● ● ●

Outline

1 NP-Complete Problems: Exact Cover, MIS, Positive 1-in-3SAT

2 Adiabatic Quantum Algorithm

- Two Adiabatic Algorithms for EC3
 Clause-violation based

 - MIS-based

4 Avoid FQPT: Change Problem Hamiltonian

Two Adiabatic Algorithms for EC3

イロン イヨン イヨン イヨン 三日

Adiabatic Quantum Algorithm

System Hamiltonian:

$$\mathcal{H}(t) = (1 - s(t))\mathcal{H}_{\mathsf{init}} + s(t)\mathcal{H}_{\mathsf{problem}}$$

for $t \in [0, T]$, s(0) = 0, s(T) = 1.

- Initial Hamiltonian: H(0) = H_{init} ground state known (easy to construct)
- **2** Problem Hamiltonian: $\mathcal{H}(T) = \mathcal{H}_{\text{problem}}$ ground state encodes the answer to the desired optimization problem
- Solution path: $s: [0, T] \longrightarrow [0, 1]$, e.g., $s(t) = \frac{t}{T}$

T: running time of the algorithm

イロン 不得 とくほ とくほ とうほう

18 / 50

Adiabatic Quantum Algorithm

System Hamiltonian:

$$\mathcal{H}(t) = (1 - s(t))\mathcal{H}_{\mathsf{init}} + s(t)\mathcal{H}_{\mathsf{problem}}$$

for $t \in [0, T]$, s(0) = 0, s(T) = 1.

- Initial Hamiltonian: H(0) = H_{init} ground state known (easy to construct)
- Problem Hamiltonian: $\mathcal{H}(T) = \mathcal{H}_{\text{problem}}$ ground state encodes the answer to the desired optimization problem
- Solution path: $s : [0, T] \longrightarrow [0, 1]$, e.g., $s(t) = \frac{t}{T}$

T: running time of the algorithm

修德講學

19 / 50

イロト イボト イヨト イヨト

Example

- Initial Hamiltonian: $\mathcal{H}_{init} = -(\sigma_1^x + \sigma_2^x + \sigma_3^x)$
- **2** Evoluation Path : $s(t) = \frac{t}{T}$
- Problem Hamiltonian: $\mathcal{H}_{\text{problem}} = 5\sigma_1^z + 10\sigma_2^z + \sigma_3^z + 7\sigma_1^z\sigma_2^z + 7\sigma_2^z\sigma_3^z$ $\circ - \circ - \circ - \circ$

 $\begin{array}{l} \mathcal{E}(s_1,s_2,s_3) = 5s_1 + 10s_2 + s_3 + 7s_1s_2 + 7s_2s_3, \, \text{spin } s_i \in \{-1,+1,+1,+1\} \\ \hline 101 & -18 \\ \hline 100 & -14 \\ \hline 100 & -10 \\ \hline 001 & -6 \\ \hline 010 & -6 \\ \hline 010 & -6 \\ \hline 011 & 14 \\ \hline 111 & 30 \\ \hline \bullet & |\psi(0)\rangle = \frac{1}{8} \sum_{x_j \in \{0,1\}} |x_1x_2x_3\rangle \\ \bullet & |\psi(T)\rangle = |101\rangle \end{array}$

Example

- Initial Hamiltonian: $\mathcal{H}_{init} = -(\sigma_1^x + \sigma_2^x + \sigma_3^x)$
- **2** Evoluation Path : $s(t) = \frac{t}{T}$
- **Orbits** Problem Hamiltonian: $\mathcal{H}_{\text{problem}} = 5\sigma_1^z + 10\sigma_2^z + \sigma_3^z + 7\sigma_1^z\sigma_2^z + 7\sigma_2^z\sigma_3^z$

0--0--0

 $\mathcal{E}(s_1, s_2, s_3) = 5s_1 + 10s_2 + s_3 + 7s_1s_2 + 7s_2s_3, \text{ spin } s_i \in \{-1, +1\}$

state	energy	
101	-18	
100	-14	
010	-10	
001	-6	
000	-2	
110	6	
011	14	
111	30	
• $ \psi(0)\rangle = \frac{1}{8} \sum_{x \in \mathbb{R}} \psi(0)\rangle$		

$$|\psi(0)\rangle = \frac{1}{8} \sum_{x_i \in \{0,1\}} |x_1 x_2 x_3\rangle$$
$$|\psi(T)\rangle = |101\rangle$$

Decomposed State Evolution Visualization (DESEV)

• Decompose ground state:

21 / 50

Adiabatic Running Time (ART)

Adiabatic Theorem

For s(t) = t/T. If T is "large" enough:

$$T = O\left(rac{\operatorname{\mathsf{poly}}(\mathsf{n})}{g_{\min}^2}
ight)$$

where minimum spectral gap

$$g_{\min} = \min_{0 \leq t \leq T} (E_1(t) - E_0(t)),$$

 $E_0(t) < E_1(t) < ...$ are the energy levels of $\mathcal{H}(t)$. Then the system remains "close" to the ground state of $\mathcal{H}(t)$.

"Traditional" version:

$$\mathsf{ART}(\mathcal{H}) = \frac{\max_{0 \le s \le 1} |\langle E_1(s) | \frac{d\mathcal{H}}{ds} | E_0(s) \rangle|}{g_{\min}^2} \max_{\substack{0 \le s \le 1 \\ c \ge s \le \frac{1}{2} | c \ge \frac{1$$

Throughout this talk, we fix the initital Hamiltonian and evolution path, and vary the problem Hamiltonian:

- **1** Initial Hamiltonian: $\mathcal{H}_{init} = -\sum_{i \in V(G)} \sigma_i^x$
- **2** Evoluation Path : $s(t) = \frac{t}{T}$
- Problem Hamiltonian

Different problem Hamiltonians \Rightarrow different adiabatic algorithms for the same problem.

Outline

INP-Complete Problems: Exact Cover, MIS, Positive 1-in-3SAT

2 Adiabatic Quantum Algorithm

Two Adiabatic Algorithms for EC3

- Clause-violation based
- MIS-based

4 Avoid FQPT: Change Problem Hamiltonian

Given an instance of EC3: $\Psi(x_1, \ldots, x_n) = C_1 \land \ldots \land C_m$

• Algorithm 1: Clause-violation based problem Hamiltonian \mathcal{H}_A :

$$\mathcal{H}_{\mathcal{A}} = \sum_{i \in \mathsf{V}(G_{\mathsf{EC}})} B_i \sigma_i^z + \sum_{ij \in \mathsf{E}(G_{\mathsf{EC}})} I_{ij} \sigma_i^z \sigma_j^z \tag{1}$$

$$B_i: \text{ $\#$ clauses that contains variable x_i} \\ I_{ij}: \text{ $\#$ clauses that contains both x_i and x_j (was called $J_{ij} = \frac{1}{2}(J_{ij} + J_{ji})$)}$$

• Algorithm 2: MIS-reduction based problem Hamiltonian \mathcal{H}_C :

$$\mathcal{H}_{C} = \sum_{i \in V(G_{EC})} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) \sigma_i^z + \sum_{ij \in E(G_{EC})} J_{ij} \sigma_i^z \sigma_j^z \quad (2)$$

where $J_{ij} > \min\{B_i, B_j\}$. Question: ART(Algorithm 1) \Rightarrow ART(Algorithm 2)?

イロト イボト イヨト イヨト

Given an instance of EC3: $\Psi(x_1, \ldots, x_n) = C_1 \land \ldots \land C_m$

• Algorithm 1: Clause-violation based problem Hamiltonian \mathcal{H}_A :

$$\mathcal{H}_{\mathcal{A}} = \sum_{i \in \mathsf{V}(\mathcal{G}_{\mathsf{EC}})} \frac{B_i \sigma_i^z}{B_i \sigma_i^z} + \sum_{ij \in \mathsf{E}(\mathcal{G}_{\mathsf{EC}})} \frac{I_{ij} \sigma_i^z \sigma_j^z}{I_{ij} \sigma_i^z \sigma_j^z}$$
(1)

$$B_i: \text{ $\#$clauses that contains variable x_i} \\ I_{ij}: \text{ $\#$clauses that contains both x_i and x_j (was called $J_{ij} = \frac{1}{2}(J_{ij} + J_{ji})$) }$$

• Algorithm 2: MIS-reduction based problem Hamiltonian \mathcal{H}_C :

$$\mathcal{H}_{C} = \sum_{i \in V(G_{EC})} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) \sigma_i^z + \sum_{ij \in E(G_{EC})} J_{ij} \sigma_i^z \sigma_j^z \quad (2)$$

where $J_{ij} > \min\{B_i, B_j\}$.

Question: $ART(Algorithm 1) \Rightarrow ART(Algorithm 2)$?

26 / 50

Given an instance of EC3: $\Psi(x_1, \ldots, x_n) = C_1 \land \ldots \land C_m$

• Algorithm 1: Clause-violation based problem Hamiltonian \mathcal{H}_A :

$$\mathcal{H}_{\mathcal{A}} = \sum_{i \in \mathsf{V}(\mathcal{G}_{\mathsf{EC}})} \frac{B_i \sigma_i^z}{B_i \sigma_i^z} + \sum_{ij \in \mathsf{E}(\mathcal{G}_{\mathsf{EC}})} \frac{I_{ij} \sigma_i^z \sigma_j^z}{I_{ij} \sigma_i^z \sigma_j^z}$$
(1)

$$B_i: \text{ $\#$ clauses that contains variable x_i} \\ I_{ij}: \text{ $\#$ clauses that contains both x_i and x_j (was called $J_{ij} = \frac{1}{2}(J_{ij} + J_{ji})$)}$$

• Algorithm 2: MIS-reduction based problem Hamiltonian \mathcal{H}_C :

$$\mathcal{H}_{C} = \sum_{i \in \mathsf{V}(G_{\mathsf{EC}})} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) \sigma_i^z + \sum_{ij \in \mathsf{E}(G_{\mathsf{EC}})} J_{ij} \sigma_i^z \sigma_j^z \quad (2)$$

where $J_{ij} > \min\{B_i, B_j\}$.

Question: $ART(Algorithm 1) \Rightarrow ART(Algorithm 2)$?

27 / 50

イロト 不得 とうせい かけとう

Given an instance of EC3: $\Psi(x_1, \ldots, x_n) = C_1 \land \ldots \land C_m$

• Algorithm 1: Clause-violation based problem Hamiltonian \mathcal{H}_A :

$$\mathcal{H}_{\mathcal{A}} = \sum_{i \in \mathsf{V}(\mathcal{G}_{\mathsf{EC}})} \frac{B_i \sigma_i^z}{i} + \sum_{ij \in \mathsf{E}(\mathcal{G}_{\mathsf{EC}})} \frac{I_{ij} \sigma_i^z \sigma_j^z}{i}$$
(1)

$$B_i: \text{ $\#$ clauses that contains variable x_i} \\ I_{ij}: \text{ $\#$ clauses that contains both x_i and x_j (was called $J_{ij} = \frac{1}{2}(J_{ij} + J_{ji})$)}$$

• Algorithm 2: MIS-reduction based problem Hamiltonian \mathcal{H}_C :

$$\mathcal{H}_{C} = \sum_{i \in \mathsf{V}(G_{\mathsf{EC}})} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) \sigma_i^z + \sum_{ij \in \mathsf{E}(G_{\mathsf{EC}})} J_{ij} \sigma_i^z \sigma_j^z \quad (2)$$

where $J_{ij} > \min\{B_i, B_j\}$.

Question: $ART(Algorithm 1) \Rightarrow ART(Algorithm 2)$?

✓) Q (
 28 / 50

イロト 不得 とうせい かけとう

Algorithm 1: Altshuler et al.

Energy function:

$$\mathcal{E}_{\Psi}(x_1,\ldots,x_n) = \sum_{i=1}^m (x_{i_1} + x_{i_2} + x_{i_3} - 1)^2$$

penalizes each violating clause $C_i = x_{i_1} \vee x_{i_2} \vee x_{i_3}$

$$\mathcal{H}_{\mathcal{A}} = \sum_{i \in \mathsf{V}(G_{\mathsf{EC}})} \frac{B_i \sigma_i^z}{\sigma_i^z} + \sum_{ij \in \mathsf{E}(G_{\mathsf{EC}})} \frac{I_{ij} \sigma_i^z \sigma_j^z}{\sigma_i^z}$$

 B_i : #clauses that contains variable x_i I_{ij} : #clauses that contains both x_i and x_j

29 / 50

修德講學

30 / 50

Algorithm 2: MIS-based

Recall: Maximum Independent Set (unweighted) Problem

- Input: a graph G, $V(G) = \{1, 2, ..., n\}$,
- Output: $mis(G) \subseteq V(G)$, independent, |mis(G)| is maximized

independent: for $i, j \in mis(G)$, $ij \notin E(G)$

Quadratic Pseudo-boolean Function

For $i \in V(G)$, associate it with a binary variable $x_i \in \{0, 1\}$. Define

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i\in V(G)} x_i - \sum_{ij\in E(G)} J_{ij}x_ix_j$$

 J_{ij} – penalty for the edge ij

Example: for $J_{ij} = 2$ • $\mathcal{Y}(1, 0, 0, 0, 0, 1) = 2$ • $\mathcal{Y}(1, 1, 0, 0, 0, 1) = 1 + 1 - 2 + 1 =$ • $\mathcal{Y}(1, 0, 0, 1, 1, 1) = 4$

Quadratic Pseudo-boolean Function

For $i \in V(G)$, associate it with a binary variable $x_i \in \{0, 1\}$. Define

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i\in V(G)} x_i - \sum_{ij\in E(G)} J_{ij}x_ix_j$$

 J_{ij} – penalty for the edge ij

Example: for $J_{ij} = 2$

- $\mathcal{Y}(1,0,0,0,0,1) = 2$
- $\mathcal{Y}(1, 1, 0, 0, 0, 1) = 1 + 1 2 + 1 = 1$

• $\mathcal{Y}(1,0,0,1,1,1) = 4$

Quadratic Pseudo-boolean Function

For $i \in V(G)$, associate it with a binary variable $x_i \in \{0, 1\}$. Define

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i\in V(G)} x_i - \sum_{ij\in E(G)} J_{ij}x_ix_j$$

 J_{ij} – penalty for the edge ij

Example: for $J_{ij} = 2$

•
$$\mathcal{Y}(1,0,0,0,0,1) = 2$$

- $\mathcal{Y}(1, 1, 0, 0, 0, 1) = 1 + 1 2 + 1 = 1$
- $\mathcal{Y}(1,0,0,1,1,1) = 4$

Quadratic Pseudo-boolean Function

For $i \in V(G)$, associate it with a binary variable $x_i \in \{0, 1\}$. Define

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i\in V(G)} x_i - \sum_{ij\in E(G)} J_{ij}x_ix_j.$$

Theorem If $J_{ij} > 1$ for all $ij \in E(G)$, then

 $|\mathsf{mis}(G)| = \mathsf{max}\,\mathcal{Y}(x_1,\ldots,x_n).$

and $mis(G) = \{i \in V(G) : x_i^* = 1\}$, where $(x_1^*, \dots, x_n^*) = \operatorname{argmax}_{(x_1, \dots, x_n) \in \{0,1\}^n} \mathcal{Y}(x_1, \dots, x_n)$

<ロト < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > 34 / 50

Quadratic Pseudo-boolean Function

For $i \in V(G)$, associate it with a binary variable $x_i \in \{0, 1\}$. Define

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i\in V(G)} x_i - \sum_{ij\in E(G)} J_{ij}x_ix_j.$$

Theorem

If $J_{ij} > 1$ for all $ij \in E(G)$, then

$$|\mathsf{mis}(G)| = \max \mathcal{Y}(x_1, \ldots, x_n).$$

and $mis(G) = \{i \in V(G) : x_i^* = 1\}$, where $(x_1^*, \dots, x_n^*) = \operatorname{argmax}_{(x_1, \dots, x_n) \in \{0,1\}^n} \mathcal{Y}(x_1, \dots, x_n).$

イロト 不得 トイヨト イヨト

Quadratic Pseudo-boolean Function

For $i \in V(G)$, associate it with a binary variable $x_i \in \{0, 1\}$. Define

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i\in\mathsf{V}(G)} x_i - \sum_{ij\in\mathsf{E}(G)} J_{ij}x_ix_j.$$

Theorem

If $J_{ij} > 1$ for all $ij \in E(G)$, then

$$|\mathsf{mis}(G)| = \max \mathcal{Y}(x_1, \dots, x_n).$$

イロト 不得 トイヨト イヨト

36 / 50

and mis(G) = { $i \in V(G) : x_i^* = 1$ }, where (x_1^*, \dots, x_n^*) = argmax_{(x_1, \dots, x_n) $\in \{0,1\}^n \mathcal{Y}(x_1, \dots, x_n)$.}

Generalize to weighted MIS problem

Theorem

If $J_{ij} > \min\{B_i, B_j\}$ for all $ij \in E(G)$, then the maximum value of

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i \in V(G)} B_i x_i - \sum_{ij \in E(G)} J_{ij} x_i x_j$$
(3)

is the total weight of the MIS, and $mis(G) = \{i \in V(G) : x_i^* = 1\}$, where $(x_1^*, ..., x_n^*) = \arg \max_{(x_1,...,x_n) \in \{0,1\}^n} \mathcal{Y}(x_1, ..., x_n)$.

Change variables: $x_i = rac{1+s_i}{2} \ (x_i = 0 \Leftrightarrow s_i = -1, \ x_i = 1 \Leftrightarrow s_i = +1)$

$$Min \quad \mathcal{E}(s_1,\ldots,s_n) = \sum_{i \in V(G)} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) s_i + \sum_{ij \in E(G)} J_{ij} s_i s_j$$

Theorem

If $J_{ij} > \min\{B_i, B_j\}$ for all $ij \in E(G)$, then the maximum value of

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i \in \mathsf{V}(G)} B_i x_i - \sum_{ij \in \mathsf{E}(G)} J_{ij} x_i x_j \tag{3}$$

is the total weight of the MIS, and $mis(G) = \{i \in V(G) : x_i^* = 1\}$, where $(x_1^*, \dots, x_n^*) = \arg \max_{(x_1, \dots, x_n) \in \{0,1\}^n} \mathcal{Y}(x_1, \dots, x_n)$.

Change variables: $x_i = \frac{1+s_i}{2}$ ($x_i = 0 \Leftrightarrow s_i = -1$, $x_i = 1 \Leftrightarrow s_i = +1$)

$$\mathsf{Min} \quad \mathcal{E}(s_1,\ldots,s_n) = \sum_{i \in \mathsf{V}(G)} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) s_i + \sum_{ij \in \mathsf{E}(G)} J_{ij} s_i s_j$$

$$\mathcal{H} = \sum_{i \in V(G)} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) \sigma_i^z + \sum_{\substack{ij \in \mathsf{E}(G) \\ \P = \mathsf{p} \land \P \\ \P = \mathsf{p} \land \P$$

Theorem

If $J_{ij} > \min\{B_i, B_j\}$ for all $ij \in E(G)$, then the maximum value of

$$\mathcal{Y}(x_1,\ldots,x_n) = \sum_{i \in \mathsf{V}(G)} B_i x_i - \sum_{ij \in \mathsf{E}(G)} J_{ij} x_i x_j \tag{3}$$

is the total weight of the MIS, and $mis(G) = \{i \in V(G) : x_i^* = 1\}$, where $(x_1^*, \dots, x_n^*) = \arg \max_{(x_1, \dots, x_n) \in \{0,1\}^n} \mathcal{Y}(x_1, \dots, x_n)$.

Change variables: $x_i = \frac{1+s_i}{2}$ $(x_i = 0 \Leftrightarrow s_i = -1, x_i = 1 \Leftrightarrow s_i = +1)$

$$\mathsf{Min} \quad \mathcal{E}(s_1,\ldots,s_n) = \sum_{i \in \mathsf{V}(G)} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) s_i + \sum_{ij \in \mathsf{E}(G)} J_{ij} s_i s_j$$

Comparison: Algorithm 1 vs. Algorithm 2

• Algorithm 1:

$$\mathcal{H}_{A} = \sum_{i \in \mathsf{V}(G_{\mathsf{EC}})} \frac{B_{i}\sigma_{i}^{z}}{B_{i}\sigma_{i}^{z}} + \sum_{ij \in \mathsf{E}(G_{\mathsf{EC}})} \frac{I_{ij}\sigma_{i}^{z}\sigma_{j}^{z}}{B_{i}\sigma_{i}^{z}\sigma_{j}^{z}}$$

• Algorithm 2:

$$\mathcal{H}_{C} = \sum_{i \in V(G_{EC})} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) \sigma_i^z + \sum_{ij \in E(G_{EC})} J_{ij} \sigma_i^z \sigma_j^z$$

where $J_{ij} > \min\{B_i, B_j\}$

Recall: $2B_i = \sum_{j \in nbr(i)} I_{ij}$ Write $J_{ij} = 2I_{ij} + D_{ij}$, for $D_{ij} > min\{B_i, B_j\} - 2I_{ij}$

$$\mathcal{H}_{C} = 2\mathcal{H}_{A} + \sum_{i \in V(G_{EC})} \sum_{j \in \mathsf{nbr}(i)} D_{ij}\sigma_{i}^{z} + \sum_{ij \in E(G_{EC})} D_{ij}\sigma_{i}^{z}\sigma_{j}^{z}$$

Does it matter if we choose different D_{ij} ?

Comparison: Algorithm 1 vs. Algorithm 2

• Algorithm 1:

$$\mathcal{H}_{A} = \sum_{i \in \mathsf{V}(G_{\mathsf{EC}})} \frac{\mathbf{B}_{i} \sigma_{i}^{z}}{\mathbf{B}_{i} \sigma_{i}^{z}} + \sum_{ij \in \mathsf{E}(G_{\mathsf{EC}})} \mathbf{I}_{ij} \sigma_{i}^{z} \sigma_{j}^{z}$$

• Algorithm 2:

$$\mathcal{H}_{C} = \sum_{i \in V(G_{EC})} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) \sigma_i^z + \sum_{ij \in E(G_{EC})} J_{ij} \sigma_i^z \sigma_j^z$$

where $J_{ij} > \min\{B_i, B_j\}$

Recall: $2B_i = \sum_{j \in nbr(i)} I_{ij}$ Write $J_{ij} = 2I_{ij} + D_{ij}$, for $D_{ij} > min\{B_i, B_j\} - 2I_{ij}$

$$\mathcal{H}_{C} = 2\mathcal{H}_{A} + \sum_{i \in V(G_{EC})} \sum_{j \in \mathsf{nbr}(i)} D_{ij}\sigma_{i}^{z} + \sum_{ij \in E(G_{EC})} D_{ij}\sigma_{i}^{z}\sigma_{j}^{z}$$

Does it matter if we choose different D_{ij} ?

Comparison: Algorithm 1 vs. Algorithm 2

• Algorithm 1:

$$\mathcal{H}_{A} = \sum_{i \in \mathsf{V}(G_{\mathsf{EC}})} \frac{B_{i}\sigma_{i}^{z}}{B_{i}\sigma_{i}^{z}} + \sum_{ij \in \mathsf{E}(G_{\mathsf{EC}})} \frac{I_{ij}\sigma_{i}^{z}\sigma_{j}^{z}}{B_{i}\sigma_{i}^{z}\sigma_{j}^{z}}$$

• Algorithm 2:

$$\mathcal{H}_{C} = \sum_{i \in V(G_{EC})} \left(\sum_{j \in \mathsf{nbr}(i)} J_{ij} - 2B_i \right) \sigma_i^z + \sum_{ij \in E(G_{EC})} J_{ij} \sigma_i^z \sigma_j^z$$

where $J_{ij} > \min\{B_i, B_j\}$

Recall: $2B_i = \sum_{j \in nbr(i)} I_{ij}$ Write $J_{ij} = 2I_{ij} + D_{ij}$, for $D_{ij} > min\{B_i, B_j\} - 2I_{ij}$

$$\mathcal{H}_{C} = 2\mathcal{H}_{A} + \sum_{i \in V(G_{EC})} \sum_{j \in \mathsf{nbr}(i)} D_{ij}\sigma_{i}^{z} + \sum_{ij \in E(G_{EC})} D_{ij}\sigma_{i}^{z}\sigma_{j}^{z}$$

Does it matter if we choose different D_{ij} ?

Computing spectral gap by perturbation

- Require computing the energy difference $E_{12}(s)$ depends on the energy function of the problem Hamiltonian.
- While the energy function for \mathcal{H}_A only depends on B_i and I_{ij} , the energy function for \mathcal{H}_C also depends on J_{ij} whose values have a range to choose.
- "E⁴₁₂ is given by a sum of θ(N) random terms with zero mean" no longer applies here as J_{ii} are not random.

Example (2nd order correction)

- using \mathcal{H}_A : $E_x^{(2)} = -\sum_{i=1}^n 1/B_i$
- using *FLC*:

$$E_x^{(2)} = -\sum_{\{i:x_i=0\}} \frac{1}{B_i - \sum_{\{j \in nbr(i): x_j=1\}} J_{ij}} + \sum_{\{i:x_i=1\}} \frac{1}{B_i}$$

- depend on the connectivity of the graph, and the non-random choice of J_{ij}

Computing spectral gap by perturbation

- Require computing the energy difference $E_{12}(s)$ depends on the energy function of the problem Hamiltonian.
- While the energy function for \mathcal{H}_A only depends on B_i and I_{ij} , the energy function for \mathcal{H}_C also depends on J_{ij} whose values have a range to choose.
- "E⁴₁₂ is given by a sum of θ(N) random terms with zero mean" no longer applies here as J_{ij} are not random.

Example (2nd order correction)

- using \mathcal{H}_A : $E_x^{(2)} = -\sum_{i=1}^n 1/B_i$
- using \mathcal{H}_C :

$$E_x^{(2)} = -\sum_{\{i:x_i=0\}} \frac{1}{B_i - \sum_{\{j \in nbr(i): x_j=1\}} J_{ij}} + \sum_{\{i:x_i=1\}} \frac{1}{B_i}$$

- depend on the connectivity of the graph, and the non-random choice of J_{ij}

Outline

INP-Complete Problems: Exact Cover, MIS, Positive 1-in-3SAT

イロト イヨト イヨト

45 / 50

2 Adiabatic Quantum Algorithm

3 Two Adiabatic Algorithms for EC3

- Clause-violation based
- MIS-based

4 Avoid FQPT: Change Problem Hamiltonian

NP-Complete Problems: Exact Cover, MIS, Positive 1-in-3SAT Adiabatic Quantum Algorithm

Two Adiabatic Algorithms for EC3

46 / 50

15-Vertex CK Graph

The corresponding Hamiltonian:

 $\mathcal{H}_1 = \sum_{i \in V_A} (6J - 2)\sigma_i^z + \sum_{i \in V_B} (6J - 2w_B)\sigma_i^z + J \sum_{ij \in E(G)} \sigma_i^z \sigma_j^z$ Here we fix $J_{ij} = J = 2 > w_B$ for all $ij \in E(G)$ NP-Complete Problems: Exact Cover, MIS, Positive 1-in-3SAT Adiabatic Quantum Algorithm

Two Adiabatic Algorithms for EC3

15-Vertex CK Graph

•
$$V_A = \{1, \dots, 6\}$$
 : •, $w_A = 1$
• $V_B = \{7, \dots, 15\}$: \triangle , $1 \le w_B < 2$

The corresponding Hamiltonian:

$$\mathcal{H}_1 = \sum_{i \in V_A} (6J - 2)\sigma_i^z + \sum_{i \in V_B} (6J - 2w_B)\sigma_i^z + J \sum_{ij \in E(G)} \sigma_i^z \sigma_j^z$$

Here we fix $J_{ii} = J = 2 > w_B$ for all $ij \in E(G)$.

FQPT

 $(Zoom: s = 0.627 \dots 0.628)$

0.6

time s

0.8

38

(-)energy

<mark>修徳講學</mark> < □ ▶ < @ ▶ < ミ ▶ < ミ ▶ ミ の Q (や 48 / 50

Two Adiabatic Algorithms for EC3 . 0 000000

Acknowledgements

Students in my AQC class:

Siyuan Han Peter Young David Kirkpatrick David Sankoff D-Wave Systems Inc. Robert Rausendorff and his group members

イロト イヨト イヨト