Adiabatic Quantum Algorithms for the NP－Complete MIS，Exact Cover and 3SAT Problems

Vicky Choi
Department of Computer Science
Virginia Tech
Falls Church，VA

July 23， 2010

Outline

（1）NP－Complete Problems：Exact Cover，MIS，Positive 1－in－3SAT
（2）Adiabatic Quantum Algorithm
（3）Two Adiabatic Algorithms for EC3
－Clause－violation based
－MIS－based

4 Avoid FQPT：Change Problem Hamiltonian

Outline

（1）NP－Complete Problems：Exact Cover，MIS，Positive 1－in－3SAT
（2）Adiabatic Quantum Algorithm
（3）Two Adiabatic Algorithms for EC3
－Clause－violation based
－MIS－based

44 Avoid FQPT：Change Problem Hamiltonian

修德講學

Exact Cover

－Input：A set of m elements，$X=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ ，a family of n subsets of $X, \mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ ，where $S_{i} \subset X$
－Question：Is there an exact cover of X ？That is，is there a subset $I \subseteq\{1, \ldots, n\}$ such that $\cup_{i \in I} S_{i}=X$ ，where $S_{i} \cap S_{j}=\emptyset$ for $i \neq j \in I$ ？

Example

Exact Cover

－Input：A set of m elements，$X=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ ，a family of n subsets of $X, \mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ ，where $S_{i} \subset X$
－Question：Is there an exact cover of X ？That is，is there a subset $I \subseteq\{1, \ldots, n\}$ such that $\cup_{i \in I} S_{i}=X$ ，where $S_{i} \cap S_{j}=\emptyset$ for $i \neq j \in I$ ？

Example

Exact Cover

－Input：A set of m elements，$X=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ ，a family of n subsets of $X, \mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ ，where $S_{i} \subset X$
－Question：Is there an exact cover of X ？That is，is there a subset $I \subseteq\{1, \ldots, n\}$ such that $\cup_{i \in I} S_{i}=X$ ，where $S_{i} \cap S_{j}=\emptyset$ for $i \neq j \in I$ ？

Example

x （1）（3）（4）

Exact Cover

－Input：A set of m elements，$X=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ ，a family of n subsets of $X, \mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ ，where $S_{i} \subset X$
－Question：Is there an exact cover of X ？That is，is there a subset $I \subseteq\{1, \ldots, n\}$ such that $\cup_{i \in I} S_{i}=X$ ，where $S_{i} \cap S_{j}=\emptyset$ for $i \neq j \in I$ ？

Example
X ：（1）（3）（4）（5）

Maximum－weight Independent Set（MIS）Problem

Maximum－weight Independent Set Problem

－Input：A graph $G(=(\mathrm{V}(G), \mathrm{E}(G))), B_{i}$ is the weight of vertex $i \in \mathrm{~V}(G)$
－Output：A subset $S \subseteq \mathrm{~V}(G)$ such that S is independent and the total weight of $S\left(=\sum_{i \in S} B_{i}\right)$ is maximized．
independent：for $i, j \in \operatorname{mis}(G), i j \notin \mathrm{E}(G)$
Example

Positive 1－in－3SAT

－Input：A 3CNF boolean formula $\Psi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \ldots \wedge C_{m}, n$ variables $x_{i} \in\{0,1\}$ and m clauses C_{k}
－Question：Is there an assignment such that there is exactly one variable in each clause is true？

Example

$$
\Psi\left(x_{1}, \ldots, x_{7}\right)=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{5}
$$

－$C_{1}=x_{1} \vee x_{2} \vee x_{3}, C_{2}=x_{1} \vee x_{2} \vee x_{4}, C_{3}=x_{3} \vee x_{4} \vee x_{5}$
－$C_{4}=x_{1} \vee x_{3} \vee x_{6}, C_{5}=x_{2} \vee x_{6} \vee x_{7}$

Positive 1－in－3SAT

－Input：A 3CNF boolean formula $\Psi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \ldots \wedge C_{m}, n$ variables $x_{i} \in\{0,1\}$ and m clauses C_{k}
－Question：Is there an assignment such that there is exactly one variable in each clause is true？

Example

$$
\Psi\left(x_{1}, \ldots, x_{7}\right)=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{5}
$$

－$C_{1}=x_{1} \vee x_{2} \vee x_{3}, C_{2}=x_{1} \vee x_{2} \vee x_{4}, C_{3}=x_{3} \vee x_{4} \vee x_{5}$
－$C_{4}=x_{1} \vee x_{3} \vee x_{6}, C_{5}=x_{2} \vee x_{6} \vee x_{7}$
$x_{1}=x_{5}=x_{7}=1$

EC3：A Special Case of Exact Cover

Recall：Exact Cover

Input：A set of m elements，$X=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ ，a family of n subsets of $X, \mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ ，where $S_{i} \subset X$

Question：Is there an exact cover of X ？
EC3：each element $c_{i} \in X$ appears exactly in three subsets

Example

S_{2}

（3） S_{5}
appears in S_{1}, S_{2}, S_{3}
$=x_{1} \vee x_{2} \vee x_{3}$

EC3：A Special Case of Exact Cover

Recall：Exact Cover

Input：A set of m elements，$X=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ ，a family of n subsets of $X, \mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ ，where $S_{i} \subset X$

Question：Is there an exact cover of X ？
EC3：each element $c_{i} \in X$ appears exactly in three subsets

Example

－Associate each set S_{i} with a binary variable $x_{i}\left(S_{i} \leftrightarrow x_{i}\right)$
－For each element $c_{i} \in X$ ，let $S_{i_{1}}$ ，
$S_{i_{2}}, S_{i_{3}}$ be the three sets that consist
of c_{i} ．Define the corresponding clause $C_{i}=x_{i_{1}} \vee x_{i_{2}} \vee x_{i_{3}} .\left(c_{i} \leftrightarrow C_{i}\right)$
c_{1} appears in S_{1}, S_{2}, S_{3}

$$
C_{1}=x_{1} \vee x_{2} \vee x_{3}
$$

Example（Positive 1－in－3SAT \leq_{P} EC3 \leq_{P} MIS）
－$\Psi\left(x_{1}, \ldots, x_{7}\right)=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{5}$ where

$$
\begin{aligned}
& C_{1}=x_{1} \vee x_{2} \vee x_{3}, C_{2}=x_{1} \vee x_{2} \vee x_{4}, C_{3}=x_{3} \vee x_{4} \vee x_{5} \\
& C_{4}=x_{1} \vee x_{3} \vee x_{6}, C_{5}=x_{2} \vee x_{6} \vee x_{7}
\end{aligned}
$$

－For each variable x_{i} ，let S_{i} be the set consisting of all clauses in which x_{i} appears：e．g．$S_{1}=\left\{C_{1}, C_{2}, C_{4}\right\}$

Example（Positive 1－in－3SAT $\leq_{p} \mathrm{EC} 3 \leq_{p}$ MIS）

－$\Psi\left(x_{1}, \ldots, x_{7}\right)=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{5}$ where

$$
\begin{aligned}
& C_{1}=x_{1} \vee x_{2} \vee x_{3}, C_{2}=x_{1} \vee x_{2} \vee x_{4}, C_{3}=x_{3} \vee x_{4} \vee x_{5} \\
& C_{4}=x_{1} \vee x_{3} \vee x_{6}, C_{5}=x_{2} \vee x_{6} \vee x_{7}
\end{aligned}
$$

－For each variable x_{i} ，let S_{i} be the set consisting of all clauses in which x_{i} appears：e．g．$S_{1}=\left\{C_{1}, C_{2}, C_{4}\right\}$ x ：（1）（4）（5）

Example（Positive 1－in－3SAT $\leq_{p} \mathrm{EC} 3 \leq_{p}$ MIS）

－$\Psi\left(x_{1}, \ldots, x_{7}\right)=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{5}$ where

$$
\begin{aligned}
& C_{1}=x_{1} \vee x_{2} \vee x_{3}, C_{2}=x_{1} \vee x_{2} \vee x_{4}, C_{3}=x_{3} \vee x_{4} \vee x_{5} \\
& C_{4}=x_{1} \vee x_{3} \vee x_{6}, C_{5}=x_{2} \vee x_{6} \vee x_{7}
\end{aligned}
$$

－For each variable x_{i} ，let S_{i} be the set consisting of all clauses in which x_{i} appears：e．g．$S_{1}=\left\{C_{1}, C_{2}, C_{4}\right\}$ x ：（1）（4）（5）

Outline

（1）NP－Complete Problems：Exact Cover，MIS，Positive 1－in－3SAT
（2）Adiabatic Quantum Algorithm
（3）Two Adiabatic Algorithms for EC3
－Clause－violation based
－MIS－based

44 Avoid FQPT：Change Problem Hamiltonian

Adiabatic Quantum Algorithm

System Hamiltonian：

$$
\mathcal{H}(t)=(1-s(t)) \mathcal{H}_{\text {init }}+s(t) \mathcal{H}_{\text {problem }}
$$

for $t \in[0, T], s(0)=0, s(T)=1$ ．
（1）Initial Hamiltonian： $\mathcal{H}(0)=\mathcal{H}_{\text {init }}$ ground state known（easy to
（2）Problem Hamiltonian： $\mathcal{H}(T)=\mathcal{H}_{\text {problem }}$ \square
（3）Evolution path：$s:[0, T] \longrightarrow[0,1]$ ，e．g．，$s(t)=\frac{t}{T}$
T ：running time of the algorithm

Adiabatic Quantum Algorithm

System Hamiltonian：

$$
\mathcal{H}(t)=(1-s(t)) \mathcal{H}_{\text {init }}+s(t) \mathcal{H}_{\text {problem }}
$$

for $t \in[0, T], s(0)=0, s(T)=1$ ．
（1）Initial Hamiltonian： $\mathcal{H}(0)=\mathcal{H}_{\text {init }}$ ground state known（easy to construct）
（2）Problem Hamiltonian： $\mathcal{H}(T)=\mathcal{H}_{\text {problem }}$ ground state encodes the answer to the desired optimization problem
（3）Evolution path：$s:[0, T] \longrightarrow[0,1]$ ，e．g．，$s(t)=\frac{t}{T}$
T ：running time of the algorithm

Example

（1）Initial Hamiltonian： $\mathcal{H}_{\text {init }}=-\left(\sigma_{1}^{x}+\sigma_{2}^{x}+\sigma_{3}^{x}\right)$
（2）Evoluation Path ：$s(t)=\frac{t}{T}$
（3）Problem Hamiltonian：
$\mathcal{H}_{\text {problem }}=5 \sigma_{1}^{z}+10 \sigma_{2}^{z}+\sigma_{3}^{z}+7 \sigma_{1}^{z} \sigma_{2}^{z}+7 \sigma_{2}^{z} \sigma_{3}^{z}$

－$|\psi(T)\rangle=|101\rangle$

Example

（1）Initial Hamiltonian： $\mathcal{H}_{\text {init }}=-\left(\sigma_{1}^{x}+\sigma_{2}^{x}+\sigma_{3}^{x}\right)$
（2）Evoluation Path ：$s(t)=\frac{t}{T}$
（3）Problem Hamiltonian：
$\mathcal{H}_{\text {problem }}=5 \sigma_{1}^{z}+10 \sigma_{2}^{z}+\sigma_{3}^{z}+7 \sigma_{1}^{z} \sigma_{2}^{z}+7 \sigma_{2}^{z} \sigma_{3}^{z}$
$\mathrm{O}-\mathrm{O}$
$\mathcal{E}\left(s_{1}, s_{2}, s_{3}\right)=5 s_{1}+10 s_{2}+s_{3}+7 s_{1} s_{2}+7 s_{2} s_{3}$, spin $s_{i} \in\{-1,+1\}$

state	energy
101	-18
100	-14
010	-10
001	-6
000	-2
110	6
011	14
111	30

－$|\psi(0)\rangle=\frac{1}{8} \sum_{x_{i} \in\{0,1\}}\left|x_{1} x_{2} x_{3}\right\rangle$
－$|\psi(T)\rangle=|101\rangle$

Decomposed State Evolution Visualization（DeSEV）

－Decompose ground state：

$$
|\psi(s)\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}(s)|x\rangle, \sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}(s)\right|^{2}=1
$$

Adiabatic Running Time（ART）

Adiabatic Theorem

For $s(t)=t / T$ ．If T is＂large＂enough：

$$
T=O\left(\frac{\operatorname{poly}(\mathrm{n})}{g_{\min }^{2}}\right)
$$

where minimum spectral gap

$$
g_{\min }=\min _{0 \leq t \leq T}\left(E_{1}(t)-E_{0}(t)\right)
$$

$E_{0}(t)<E_{1}(t)<\ldots$ are the energy levels of $\mathcal{H}(t)$ ．Then the system remains＂close＂to the ground state of $\mathcal{H}(t)$ ．
＂Traditional＂version：

$$
\operatorname{ART}(\mathcal{H})=\frac{\left.\max _{0 \leq s \leq 1}\left|\left\langle E_{1}(s)\right| \frac{d \mathcal{H}}{d s}\right| E_{0}(s)\right\rangle \mid}{g_{\min }^{2}} \max _{0 \leq s \leq 1}\|\mathcal{H}(s)\|
$$

Throughout this talk，we fix the initital Hamiltonian and evolution path，and vary the problem Hamiltonian：
（1）Initial Hamiltonian： $\mathcal{H}_{\text {init }}=-\sum_{i \in \mathrm{~V}(G)} \sigma_{i}^{X}$
（2）Evoluation Path ：$s(t)=\frac{t}{T}$
（3）Problem Hamiltonian
Different problem Hamiltonians \Rightarrow different adiabatic algorithms for the same problem．

Outline

（1）NP－Complete Problems：Exact Cover，MIS，Positive 1－in－3SAT

（2）Adiabatic Quantum Algorithm

（3）Two Adiabatic Algorithms for EC3
－Clause－violation based
－MIS－based

44 Avoid FQPT：Change Problem Hamiltonian

Given an instance of EC3：$\Psi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \ldots \wedge C_{m}$
－Algorithm 1：Clause－violation based problem Hamiltonian \mathcal{H}_{A}

B_{i} ：\＃clauses that contains variable x_{i} $l_{i j}$ ：\＃clauses that contains both x_{i} and x_{j}（was called $\left.J_{i j}=\frac{1}{2}\left(J_{i j}+J_{j i}\right)\right)$
－Algorithm 2：MIS－reduction based problem Hamiltonian \mathcal{H}_{C} ：

where $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$ ．
Question：ART（Algorithm 1）\Rightarrow ART（Algorithm 2）？
修德講學

Given an instance of EC3：$\Psi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \ldots \wedge C_{m}$
－Algorithm 1：Clause－violation based problem Hamiltonian \mathcal{H}_{A} ：

$$
\begin{equation*}
\mathcal{H}_{A}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)} B_{i} \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} I_{i j} \sigma_{i}^{z} \sigma_{j}^{z} \tag{1}
\end{equation*}
$$

B_{i} ：\＃clauses that contains variable x_{i}
$l_{i j}$ ：\＃clauses that contains both x_{i} and x_{j}（was called
$\left.J_{i j}=\frac{1}{2}\left(J_{i j}+J_{j i}\right)\right)$

where $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$

Given an instance of EC3：$\Psi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \ldots \wedge C_{m}$
－Algorithm 1：Clause－violation based problem Hamiltonian \mathcal{H}_{A} ：

$$
\begin{equation*}
\mathcal{H}_{A}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)} B_{i} \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} I_{i j} \sigma_{i}^{z} \sigma_{j}^{z} \tag{1}
\end{equation*}
$$

B_{i} ：\＃clauses that contains variable x_{i}
$l_{i j}$ ：\＃clauses that contains both x_{i} and x_{j}（was called
$\left.J_{i j}=\frac{1}{2}\left(J_{i j}+J_{j i}\right)\right)$
－Algorithm 2：MIS－reduction based problem Hamiltonian \mathcal{H}_{C} ：

$$
\begin{equation*}
\mathcal{H}_{C}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)}\left(\sum_{j \in \mathrm{nbr}(i)} J_{i j}-2 B_{i}\right) \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z} \tag{2}
\end{equation*}
$$

where $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$ ．

Given an instance of EC3：$\Psi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \ldots \wedge C_{m}$
－Algorithm 1：Clause－violation based problem Hamiltonian \mathcal{H}_{A} ：

$$
\begin{equation*}
\mathcal{H}_{A}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)} B_{i} \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} I_{i j} \sigma_{i}^{z} \sigma_{j}^{z} \tag{1}
\end{equation*}
$$

B_{i} ：\＃clauses that contains variable x_{i}
$l_{i j}$ ：\＃clauses that contains both x_{i} and x_{j}（was called
$\left.J_{i j}=\frac{1}{2}\left(J_{i j}+J_{j i}\right)\right)$
－Algorithm 2：MIS－reduction based problem Hamiltonian \mathcal{H}_{C} ：

$$
\begin{equation*}
\mathcal{H}_{C}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)}\left(\sum_{j \in \mathrm{nbr}(i)} J_{i j}-2 B_{i}\right) \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z} \tag{2}
\end{equation*}
$$

where $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$.
Question：ART（Algorithm 1）$\Rightarrow \mathrm{ART}$（Algorithm 2）？

Algorithm 1：Altshuler et al．

Energy function：

$$
\mathcal{E}_{\Psi}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{m}\left(x_{i_{1}}+x_{i_{2}}+x_{i_{3}}-1\right)^{2}
$$

penalizes each violating clause $C_{i}=x_{i 1} \vee x_{i 2} \vee x_{i 3}$

$$
\mathcal{H}_{A}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)} B_{i} \sigma_{i}^{2}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} l_{i j} \sigma_{i}^{2} \sigma_{j}^{2}
$$

B_{i} ：\＃clauses that contains variable x_{i}
$l_{i j}$ ：\＃clauses that contains both x_{i} and x_{j}
＂While our argument immediately implies that a particular quantum adiabatic algorithm for EC3 will fail，it is important to note that it also applies to more general cases．In particular，it does not rely on the specific form of the problem Hamiltonian，but rather on its general statistical properties，so that it should extend to other

Algorithm 2：MIS－based

Recall：Maximum Independent Set（unweighted）Problem

－Input：a graph $G, V(G)=\{1,2, \ldots, n\}$ ，
－Output：mis $(G) \subseteq \mathrm{V}(G)$ ，independent， \mid mis $(G) \mid$ is maximized independent：for $i, j \in \operatorname{mis}(G), i j \notin \mathrm{E}(G)$

Example

Quadratic Pseudo－boolean Function

For $i \in \mathrm{~V}(G)$ ，associate it with a binary variable $x_{i} \in\{0,1\}$ ．Define

$$
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j}
$$

$J_{i j}$－penalty for the edge $i j$

Quadratic Pseudo－boolean Function

For $i \in \mathrm{~V}(G)$ ，associate it with a binary variable $x_{i} \in\{0,1\}$ ．Define

$$
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j}
$$

$J_{i j}$－penalty for the edge $i j$
Example：for $J_{i j}=2$
－ $\mathcal{Y}(1,0,0,0,0,1)=2$
－ $\mathcal{Y}(1,1,0,0,0,1)=1+1-2+1=1$
－ $\mathcal{Y}(1,0,0,1,1,1)=4$

Quadratic Pseudo－boolean Function

For $i \in \mathrm{~V}(G)$ ，associate it with a binary variable $x_{i} \in\{0,1\}$ ．Define

$$
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j}
$$

$J_{i j}$－penalty for the edge $i j$
Example：for $J_{i j}=2$
－ $\mathcal{Y}(1,0,0,0,0,1)=2$
－ $\mathcal{Y}(1,1,0,0,0,1)=1+1-2+1=1$
－ $\mathcal{Y}(1,0,0,1,1,1)=4$

Quadratic Pseudo－boolean Function

For $i \in \mathrm{~V}(G)$ ，associate it with a binary variable $x_{i} \in\{0,1\}$ ．Define

$$
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j} .
$$

Theorem
If $J_{i j}>1$ for all $i j \in \mathrm{E}(G)$ ，then

$$
' m \operatorname{mis}^{\prime}(G) \mid=\max \mathcal{V}\left(x_{1}, \ldots, x_{n}\right) .
$$

and $\operatorname{mis}(G)=\left\{i \in \mathrm{~V}(G): x_{i}^{*}=1\right\}$ ，where
$\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\operatorname{argmax}_{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}} \mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)$

Quadratic Pseudo－boolean Function

For $i \in \mathrm{~V}(G)$ ，associate it with a binary variable $x_{i} \in\{0,1\}$ ．Define

$$
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j} .
$$

Theorem
If $J_{i j}>1$ for all $i j \in \mathrm{E}(G)$ ，then

$$
|\operatorname{mis}(G)|=\max \mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)
$$

and $\operatorname{mis}(G)=\left\{i \in \mathrm{~V}(G): x_{i}^{*}=1\right\}$ ，where
$\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\operatorname{argmax}_{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}} \mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)$ ．

Quadratic Pseudo－boolean Function

For $i \in \mathrm{~V}(G)$ ，associate it with a binary variable $x_{i} \in\{0,1\}$ ．Define

$$
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j} .
$$

Theorem
If $J_{i j}>1$ for all $i j \in \mathrm{E}(G)$ ，then

$$
|\operatorname{mis}(G)|=\max \mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)
$$

and $\operatorname{mis}(G)=\left\{i \in \mathrm{~V}(G): x_{i}^{*}=1\right\}$ ，where
$\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\operatorname{argmax}_{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}} \mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)$ ．
Generalize to weighted MIS problem

Theorem
If $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$ for all $i j \in \mathrm{E}(G)$ ，then the maximum value of

$$
\begin{equation*}
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} B_{i} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j} \tag{3}
\end{equation*}
$$

is the total weight of the MIS，and $\operatorname{mis}(G)=\left\{i \in \mathrm{~V}(G): x_{i}^{*}=1\right\}$ ， where $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\arg \max _{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}} \mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)$ ．

Change variables：$x_{i}=\frac{1+s_{i}}{2}\left(x_{i}=0 \Leftrightarrow s_{i}=-1, x_{i}=1 \Leftrightarrow s_{i}=+1\right)$

Theorem

If $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$ for all $i j \in \mathrm{E}(G)$ ，then the maximum value of

$$
\begin{equation*}
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} B_{i} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j} \tag{3}
\end{equation*}
$$

is the total weight of the MIS，and $\operatorname{mis}(G)=\left\{i \in \mathrm{~V}(G): x_{i}^{*}=1\right\}$ ， where $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\arg \max _{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}} \mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)$ ．
Change variables：$x_{i}=\frac{1+s_{i}}{2}\left(x_{i}=0 \Leftrightarrow s_{i}=-1, x_{i}=1 \Leftrightarrow s_{i}=+1\right)$
$\operatorname{Min} \mathcal{E}\left(s_{1}, \ldots, s_{n}\right)=\sum_{i \in \mathrm{~V}(G)}\left(\sum_{j \in \operatorname{nbr}(i)} J_{i j}-2 B_{i}\right) s_{i}+\sum_{i j \in \mathrm{E}(G)} J_{i j} s_{i} s_{j}$

Theorem

If $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$ for all $i j \in \mathrm{E}(G)$ ，then the maximum value of

$$
\begin{equation*}
\mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~V}(G)} B_{i} x_{i}-\sum_{i j \in \mathrm{E}(G)} J_{i j} x_{i} x_{j} \tag{3}
\end{equation*}
$$

is the total weight of the MIS，and $\operatorname{mis}(G)=\left\{i \in \mathrm{~V}(G): x_{i}^{*}=1\right\}$ ， where $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\arg \max _{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}} \mathcal{Y}\left(x_{1}, \ldots, x_{n}\right)$ ．

Change variables：$x_{i}=\frac{1+s_{i}}{2}\left(x_{i}=0 \Leftrightarrow s_{i}=-1, x_{i}=1 \Leftrightarrow s_{i}=+1\right)$
$\operatorname{Min} \mathcal{E}\left(s_{1}, \ldots, s_{n}\right)=\sum_{i \in \mathrm{~V}(G)}\left(\sum_{j \in \operatorname{nbr}(i)} J_{i j}-2 B_{i}\right) s_{i}+\sum_{i j \in \mathrm{E}(G)} J_{i j} s_{i} s_{j}$

$$
\mathcal{H}=\sum_{i \in \mathrm{~V}(G)}\left(\sum_{j \in \mathrm{nbr}(i)} J_{i j}-2 B_{i}\right) \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}(G)} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
$$

Comparison: Algorithm 1 vs. Algorithm 2

- Algorithm 1:

$$
\mathcal{H}_{A}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)} B_{i} \sigma_{i}^{2}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} l_{i j} \sigma_{i}^{2} \sigma_{j}^{2}
$$

- Algorithm 2 :

$$
\mathcal{H}_{c}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC})}\right.}\left(\sum_{j \in \operatorname{nbr}(i)} J_{i j}-2 B_{i}\right) \sigma_{i}^{2}+\sum_{i j \in \mathrm{E}\left(\mathrm{G}_{\mathrm{EC}}\right)} J_{i j} \sigma_{i}^{2} \sigma_{j}^{2}
$$

where $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$
Recall: $2 B_{i}=\sum_{j \text { enbrbrij }} l_{i j}$
Write $J_{i j}=2 l_{i j}+D_{i j}$, for $D_{i j}>\min \left\{B_{i}, B_{j}\right\}-2 l_{i j}$

Comparison：Algorithm 1 vs．Algorithm 2
－Algorithm 1：

$$
\mathcal{H}_{A}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)} B_{i} \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} l_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
$$

－Algorithm 2：

$$
\mathcal{H}_{C}=\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)}\left(\sum_{j \in \operatorname{nbr}(i)} J_{i j}-2 B_{i}\right) \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
$$

where $J_{i j}>\min \left\{B_{i}, B_{j}\right\}$
Recall： $2 B_{i}=\sum_{j \in \text { nbr }(i)} l_{i j}$
Write $J_{i j}=2 l_{i j}+D_{i j}$ ，for $D_{i j}>\min \left\{B_{i}, B_{j}\right\}-2 l_{i j}$

$$
\mathcal{H}_{C}=2 \mathcal{H}_{A}+\sum_{i \in \mathrm{~V}\left(G_{\mathrm{EC}}\right)} \sum_{j \in \operatorname{nbr}(i)} D_{i j} \sigma_{i}^{z}+\sum_{i j \in \mathrm{E}\left(G_{\mathrm{EC}}\right)} D_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
$$

Does it matter if we choose different $D_{i j}$ ？

Computing spectral gap by perturbation

－Require computing the energy difference $E_{12}(s)$－depends on the energy function of the problem Hamiltonian．
－While the energy function for \mathcal{H}_{A} only depends on B_{i} and $I_{i j}$ ， the energy function for \mathcal{H}_{C} also depends on $J_{i j}$ whose values have a range to choose．
－＂E_{12}^{4} is given by a sum of $\theta(N)$ random terms with zero mean＂no longer applies here as $J_{i j}$ are not random．
－using $\mathcal{H}_{A}: E_{x}^{(2)}=-\sum_{i=1}^{n} 1 / B_{i}$
－using \mathcal{H}_{C} ：

- depend on the connectivity of the graph, and the

Computing spectral gap by perturbation

－Require computing the energy difference $E_{12}(s)$－depends on the energy function of the problem Hamiltonian．
－While the energy function for \mathcal{H}_{A} only depends on B_{i} and $I_{i j}$ ， the energy function for \mathcal{H}_{C} also depends on $J_{i j}$ whose values have a range to choose．
－＂E_{12}^{4} is given by a sum of $\theta(N)$ random terms with zero mean＂no longer applies here as $J_{i j}$ are not random．

Example（ind order correction）

－using \mathcal{H}_{A} ：$E_{X}^{(2)}=-\sum_{i=1}^{n} 1 / B_{i}$
－using \mathcal{H}_{C} ：

$$
E_{x}^{(2)}=-\sum_{\left\{i: x_{i}=0\right\}} \frac{1}{B_{i}-\sum_{\left\{j \in n b r(i): x_{j}=1\right\}} J_{i j}}+\sum_{\left\{i: x_{i}=1\right\}} \frac{1}{B_{i}}
$$

－depend on the connectivity of the graph，and the non－random choice of $J_{i j}$

Outline

（1）NP－Complete Problems：Exact Cover，MIS，Positive 1－in－3SAT
（2）Adiabatic Quantum Algorithm
（3）Two Adiabatic Algorithms for EC3
－Clause－violation based
－MIS－based

4 Avoid FQPT：Change Problem Hamiltonian

15-Vertex CK Graph

- $V_{A}=\{1, \ldots, 6\}: \bullet, w_{A}=1$
- $V_{B}=\{7, \ldots, 15\}: \triangle, 1 \leq w_{B}<2$

The corresponding Hamiltonian:

Here we fix $J_{i j}=J=2>w_{B}$ for all $i j \in E(G)$

15－Vertex CK Graph

$$
\begin{aligned}
& \text { - } V_{A}=\{1, \ldots, 6\}: \bullet, w_{A}=1 \\
& \text { - } V_{B}=\{7, \ldots, 15\}: \triangle, 1 \leq w_{B}<2
\end{aligned}
$$

The corresponding Hamiltonian：

$$
\mathcal{H}_{1}=\sum_{i \in V_{A}}(6 J-2) \sigma_{i}^{z}+\sum_{i \in V_{B}}\left(6 J-2 w_{B}\right) \sigma_{i}^{z}+J \sum_{i j \in \mathrm{E}(G)} \sigma_{i}^{z} \sigma_{j}^{z}
$$

Here we fix $J_{i j}=J=2>w_{B}$ for all $i j \in \mathrm{E}(G)$ ．

FQPT

Ground State

$$
\text { (Zoom:s }=0.627 \ldots 0.628)
$$

$$
s^{*}=0.6276, g_{\min }=1.04 \times 10^{-5}
$$

Change Parameter．．．Avoid FQPT：$g_{\text {min }}=10^{-5} \rightarrow 10^{-1}$

$$
J=2
$$

$$
J=20
$$

First Excited State

$$
s^{*}=0.627637, g_{\min }=1.04 \times 10^{-5}
$$

$$
s^{*}=0.667731, g_{\min }=0.145
$$

$$
J=2
$$

$$
|\triangle \Delta \Delta \triangle\rangle \quad|\triangle \Delta \Delta\rangle
$$

Acknowledgements

Students in my AQC class：

Siyuan Han
Peter Young
David Kirkpatrick
David Sankoff
D－Wave Systems Inc．
Robert Rausendorff and his group members

