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Local: lattice gauge theories

H(s) = −J
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Symmetries:
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Motivation

Can one relate all these models?

By studying one model, can one learn 
something of other models?

Use Quantum Information tools to relate them

Completeness results:

Models with different features can be mapped onto a single model 

Yes!

In equilibrium the crucial quantity: partition function Z =

∑

s

e
−βH(s)
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M. Van den Nest, W. Dür, H. J. Briegel, Phys. Rev. Lett. 100, 110501(2008)

A model is ‘complete’ 

Its partition function can specialize 
(by tuning its coupling strengths) 

to the partition function of any other classical spin model



on an arbitrary graph

M. Van den Nest, W. Dür, H. J. Briegel, Phys. Rev. Lett. 100, 110501(2008)

Completeness of the 2D Ising
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Completeness of classical spin models and universal quantum computation

Figure 6. The graph state |ϕG〉 (a specific instance of it is drawn in the figure)
is generated from the cluster state |C〉 by applying a measurement pattern 〈β|
on the cluster. In its turn, the cluster state is generated from the state |ϕ2D〉 by
measuring all edge qubits VE (denoted by red dots) in the Y basis. Black dots
denote vertex qubits.

where |0Y 〉VE is a tensor product of the (+1)-eigenstate of Y on all edge qubits, and Σ′

are the local Pauli operators appropriate for the corresponding measurement outcomes.
To summarize, |C〉 can be generated from |ϕ2D〉 via equation (20), which shows that

also |ϕ2D〉 is a universal resource state. Given the universality of the cluster state, it follows
that any state |ψ〉 (in particular any |ϕG〉) can be generated from |C〉 via equation (19).
Together, this implies that any state |ϕG〉 can be generated from |ϕ2D〉 by means of local
measurements (see figure 6).

We are now ready to establish the connection between the evaluation of Ising partition
functions and universal measurement-based quantum computation. To do so, consider the
following procedure. First, the partition function of an Ising model on a graph G can be
expressed in the form (6). The stabilizer state |ϕ2D〉 is obtained from the cluster state |C〉
after applying a certain measurement pattern |β〉 (i.e. we consider (19) with |ψ〉 = |ϕ2D〉).
Finally the cluster state |C〉 is obtained from the state |ϕ2D〉 after measuring all edge
qubits in the Y basis (see equation (20) and figure 6).

This means that the partition function of the Ising model on the graph G can be
written as

ZG({Jab, ha}) = A 〈γ|ϕ2D〉, (21)

where A = 2(|E|+|V |+M−n)/2 is a constant and |γ〉 is a product state, |γ〉 = Σ|α〉 ⊗ Σ′|β〉 ⊗
|0Y 〉VE . Now, by comparing the right hand side of (21) with (6) we see that it corresponds
to the partition function of the Ising model on a 2D square lattice evaluated with a set of
parameters {J ′

ij, h
′
i} determined by |γ〉. This allows us to conclude that ZG can be written

as follows:

ZG({Jab, ha}) ∝ Z2D({J ′
ij, h

′
i}). (22)

In other words, the partition function of the Ising model on an arbitrary graph can be
recovered as a special instance of the partition function of the Ising model on a 2D square
lattice. This proves that the 2D Ising model is complete for Ising models on any other
graph.

In the above derivation, we have introduced an intermediate step to go from the
resource |ϕ2D〉 to the 2D cluster state |C〉 in order to show the universality of the state
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Figure 6. The graph state |ϕG〉 (a specific instance of it is drawn in the figure)
is generated from the cluster state |C〉 by applying a measurement pattern 〈β|
on the cluster. In its turn, the cluster state is generated from the state |ϕ2D〉 by
measuring all edge qubits VE (denoted by red dots) in the Y basis. Black dots
denote vertex qubits.

where |0Y 〉VE is a tensor product of the (+1)-eigenstate of Y on all edge qubits, and Σ′

are the local Pauli operators appropriate for the corresponding measurement outcomes.
To summarize, |C〉 can be generated from |ϕ2D〉 via equation (20), which shows that

also |ϕ2D〉 is a universal resource state. Given the universality of the cluster state, it follows
that any state |ψ〉 (in particular any |ϕG〉) can be generated from |C〉 via equation (19).
Together, this implies that any state |ϕG〉 can be generated from |ϕ2D〉 by means of local
measurements (see figure 6).

We are now ready to establish the connection between the evaluation of Ising partition
functions and universal measurement-based quantum computation. To do so, consider the
following procedure. First, the partition function of an Ising model on a graph G can be
expressed in the form (6). The stabilizer state |ϕ2D〉 is obtained from the cluster state |C〉
after applying a certain measurement pattern |β〉 (i.e. we consider (19) with |ψ〉 = |ϕ2D〉).
Finally the cluster state |C〉 is obtained from the state |ϕ2D〉 after measuring all edge
qubits in the Y basis (see equation (20) and figure 6).

This means that the partition function of the Ising model on the graph G can be
written as

ZG({Jab, ha}) = A 〈γ|ϕ2D〉, (21)

where A = 2(|E|+|V |+M−n)/2 is a constant and |γ〉 is a product state, |γ〉 = Σ|α〉 ⊗ Σ′|β〉 ⊗
|0Y 〉VE . Now, by comparing the right hand side of (21) with (6) we see that it corresponds
to the partition function of the Ising model on a 2D square lattice evaluated with a set of
parameters {J ′

ij, h
′
i} determined by |γ〉. This allows us to conclude that ZG can be written

as follows:

ZG({Jab, ha}) ∝ Z2D({J ′
ij, h

′
i}). (22)

In other words, the partition function of the Ising model on an arbitrary graph can be
recovered as a special instance of the partition function of the Ising model on a 2D square
lattice. This proves that the 2D Ising model is complete for Ising models on any other
graph.

In the above derivation, we have introduced an intermediate step to go from the
resource |ϕ2D〉 to the 2D cluster state |C〉 in order to show the universality of the state
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Figure 12. Concatenation of merge rules. A thick gray line over certain vertex
qubits (and edge qubits in between) symbolizes that they have to be merged.

Figure 13. Measurement pattern for obtaining a plaquette with a decorated
crossing starting from a 2D square lattice. It involves Y measurements, and
hence it corresponds to complex parameters. The figure shows explicitly how the
underlying graph changes with the measurements applied.
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Figure 14. We will first obtain a decorated 2D square lattice with crossings from a
decorated 2D square lattice. This procedure involves complex parameters. From
the latter lattice, we will obtain a decorated 3D square lattice, in a procedure
which involves only real parameters.

Figure 15. Measurement pattern for generating a plaquette without a crossing.
The plaquette needs to have the same size as the plaquette with a crossing.
This pattern consists of deleting all inner vertices and merging the edges at the
boundaries so that only one decoration remains at each side.

Now we can proceed with the example. The outline of the procedure is as follows:
first, we generate a 2D square lattice with crossings, with all edges decorated, from a
2D decorated square lattice. This involves creation of crossings, which correspond to
complex parameters. Then, we generate a decorated 3D square lattice from the decorated
2D square lattice with crossings. This involves only merge and deletion rules, which
correspond to real parameters (see figure 14).

In order to generate a decorated 2D square lattice with crossings from a decorated 2D
square lattice, we need to generate plaquettes with decorated crossings, and plaquettes
without crossings. To obtain a plaquette with a crossing we proceed as in figure 13. To
obtain a plaquette without a crossing, we only need to select a square in the 2D square
lattice of the same size as in figure 13, and delete all vertices inside. Then we merge the
vertices at the boundaries so that only one decoration remains at each side of the square
(see figure 15).

Now we want to generate a 3D square lattice starting from a 2D square lattice with
crossings by means of the merge and deletion rule alone. To do so, we first embed the
figure shown in figure 16(a), which we call a ‘face’, on the 2D square lattice with crossings
(the face can be seen as part of a three-dimensional structure, as will be made explicit later
in figure 19). We do it by tilting every square to the left so that the former vertical lines of
the squares now coincide with the diagonal lines (going from the upper left corner to the

doi:10.1088/1742-5468/2009/07/P07001 25
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Figure 12. Concatenation of merge rules. A thick gray line over certain vertex
qubits (and edge qubits in between) symbolizes that they have to be merged.

Figure 13. Measurement pattern for obtaining a plaquette with a decorated
crossing starting from a 2D square lattice. It involves Y measurements, and
hence it corresponds to complex parameters. The figure shows explicitly how the
underlying graph changes with the measurements applied.
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Figure 14. We will first obtain a decorated 2D square lattice with crossings from a
decorated 2D square lattice. This procedure involves complex parameters. From
the latter lattice, we will obtain a decorated 3D square lattice, in a procedure
which involves only real parameters.

Figure 15. Measurement pattern for generating a plaquette without a crossing.
The plaquette needs to have the same size as the plaquette with a crossing.
This pattern consists of deleting all inner vertices and merging the edges at the
boundaries so that only one decoration remains at each side.

Now we can proceed with the example. The outline of the procedure is as follows:
first, we generate a 2D square lattice with crossings, with all edges decorated, from a
2D decorated square lattice. This involves creation of crossings, which correspond to
complex parameters. Then, we generate a decorated 3D square lattice from the decorated
2D square lattice with crossings. This involves only merge and deletion rules, which
correspond to real parameters (see figure 14).

In order to generate a decorated 2D square lattice with crossings from a decorated 2D
square lattice, we need to generate plaquettes with decorated crossings, and plaquettes
without crossings. To obtain a plaquette with a crossing we proceed as in figure 13. To
obtain a plaquette without a crossing, we only need to select a square in the 2D square
lattice of the same size as in figure 13, and delete all vertices inside. Then we merge the
vertices at the boundaries so that only one decoration remains at each side of the square
(see figure 15).

Now we want to generate a 3D square lattice starting from a 2D square lattice with
crossings by means of the merge and deletion rule alone. To do so, we first embed the
figure shown in figure 16(a), which we call a ‘face’, on the 2D square lattice with crossings
(the face can be seen as part of a three-dimensional structure, as will be made explicit later
in figure 19). We do it by tilting every square to the left so that the former vertical lines of
the squares now coincide with the diagonal lines (going from the upper left corner to the

doi:10.1088/1742-5468/2009/07/P07001 25

=

realJ
′

larger

ZIsing, any G(J)Z3D Ising(J, J ′)

same kind of interactions

✓ 



GDlC, W. Dür, M. Van den Nest, H. J. Briegel, JSTAT P07001 (2009)

Completeness with real coupl.

Analogous for q-level systems

Ising model:

 Result: J.S
tat.M

ech.
(2009)

P
07001

Completeness of classical spin models and universal quantum computation

Figure 12. Concatenation of merge rules. A thick gray line over certain vertex
qubits (and edge qubits in between) symbolizes that they have to be merged.

Figure 13. Measurement pattern for obtaining a plaquette with a decorated
crossing starting from a 2D square lattice. It involves Y measurements, and
hence it corresponds to complex parameters. The figure shows explicitly how the
underlying graph changes with the measurements applied.
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Figure 14. We will first obtain a decorated 2D square lattice with crossings from a
decorated 2D square lattice. This procedure involves complex parameters. From
the latter lattice, we will obtain a decorated 3D square lattice, in a procedure
which involves only real parameters.

Figure 15. Measurement pattern for generating a plaquette without a crossing.
The plaquette needs to have the same size as the plaquette with a crossing.
This pattern consists of deleting all inner vertices and merging the edges at the
boundaries so that only one decoration remains at each side.

Now we can proceed with the example. The outline of the procedure is as follows:
first, we generate a 2D square lattice with crossings, with all edges decorated, from a
2D decorated square lattice. This involves creation of crossings, which correspond to
complex parameters. Then, we generate a decorated 3D square lattice from the decorated
2D square lattice with crossings. This involves only merge and deletion rules, which
correspond to real parameters (see figure 14).

In order to generate a decorated 2D square lattice with crossings from a decorated 2D
square lattice, we need to generate plaquettes with decorated crossings, and plaquettes
without crossings. To obtain a plaquette with a crossing we proceed as in figure 13. To
obtain a plaquette without a crossing, we only need to select a square in the 2D square
lattice of the same size as in figure 13, and delete all vertices inside. Then we merge the
vertices at the boundaries so that only one decoration remains at each side of the square
(see figure 15).

Now we want to generate a 3D square lattice starting from a 2D square lattice with
crossings by means of the merge and deletion rule alone. To do so, we first embed the
figure shown in figure 16(a), which we call a ‘face’, on the 2D square lattice with crossings
(the face can be seen as part of a three-dimensional structure, as will be made explicit later
in figure 19). We do it by tilting every square to the left so that the former vertical lines of
the squares now coincide with the diagonal lines (going from the upper left corner to the
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Figure 14. We will first obtain a decorated 2D square lattice with crossings from a
decorated 2D square lattice. This procedure involves complex parameters. From
the latter lattice, we will obtain a decorated 3D square lattice, in a procedure
which involves only real parameters.

Figure 15. Measurement pattern for generating a plaquette without a crossing.
The plaquette needs to have the same size as the plaquette with a crossing.
This pattern consists of deleting all inner vertices and merging the edges at the
boundaries so that only one decoration remains at each side.

Now we can proceed with the example. The outline of the procedure is as follows:
first, we generate a 2D square lattice with crossings, with all edges decorated, from a
2D decorated square lattice. This involves creation of crossings, which correspond to
complex parameters. Then, we generate a decorated 3D square lattice from the decorated
2D square lattice with crossings. This involves only merge and deletion rules, which
correspond to real parameters (see figure 14).

In order to generate a decorated 2D square lattice with crossings from a decorated 2D
square lattice, we need to generate plaquettes with decorated crossings, and plaquettes
without crossings. To obtain a plaquette with a crossing we proceed as in figure 13. To
obtain a plaquette without a crossing, we only need to select a square in the 2D square
lattice of the same size as in figure 13, and delete all vertices inside. Then we merge the
vertices at the boundaries so that only one decoration remains at each side of the square
(see figure 15).

Now we want to generate a 3D square lattice starting from a 2D square lattice with
crossings by means of the merge and deletion rule alone. To do so, we first embed the
figure shown in figure 16(a), which we call a ‘face’, on the 2D square lattice with crossings
(the face can be seen as part of a three-dimensional structure, as will be made explicit later
in figure 19). We do it by tilting every square to the left so that the former vertical lines of
the squares now coincide with the diagonal lines (going from the upper left corner to the
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 Quantum formulation of Abelian discrete LGTs
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v

1 2

34

|s〉1 := |(sa + sb + sc + sd)mod q〉1

FIG. 1: The state |ψLGT〉 places one quantum particle (blue
dots, labeled with numbers) at each face, thereby characteriz-
ing the interaction of classical spins (black dots, labeled with
letters) around that face. The quantum spin at face f1, sf1

is
obtained by summing modulo q the values of the spins at the
boundary of the face.

and each column (edge) contains 2(d − 1) ones, where d
is the dimension of the lattice, and the rest are zeros. In
the case of open boundary conditions, the edges in the
boundary participate in only (d − 1) faces.

There is a standard way to compute the stabilizers out
of a matrix such as A (see, e.g. [? ]). We first note that
the rank of the matrix A depends on the dimension of
the lattice d. If A has full rank, then each column of
A corresponds to one X stabilizer, and there are no Z
stabilizers. If A does not have full rank, then a set of
m linearly independent columns in A corresponds to the
X stabilizers, and one has to find a set of |F | − m Z
stabilizers which are orthogonal to each other and to all
X stabilizers.

Via this procedure, one can see that the state |ψLGT〉
defined on a 2D square lattice with open boundary con-
ditions corresponds to the product state |+〉⊗|F |, where
|+〉 is the eigenstate of the Pauli matrix X , with eigen-
value +1, X |+〉 = |+〉. |ψLGT〉 defined on a 2D square
lattice with periodic boundary conditions corresponds to
the state |GHZ〉 = |0〉⊗|F | + |1〉⊗|F |. For higher dimen-
sional lattices, e.g. 3D lattices, the state |ψLGT〉 is less
trivial.

Below, we will use the state |ψLGT〉 defined on some
lattice as a resource for measurement–based quantum
computation [? ] in order to prove the completeness
of that LGT on that lattice. The fact that |ψLGT〉 de-
fined on a 2D lattice contains either no entanglement at
all (open boundary conditions) or a very small amount of
them (periodic boundary conditions), and thus are use-
less states from the point of view of measurement–based
quantum computation, is in agreement with the fact that
2D Z2 LGTs are trivial [? ] and cannot be complete.

As noticed in [? ], the fact that |ψLGT〉 is a stabilizer
state reveals some symmetries in the partition function.
That is, because |ψ〉 is left invariant under any opera-
tor s ∈ S, s|ψ〉 = |ψ〉, this translates into the following

invariance in the partition function

Z = 〈α|ψ〉 = 〈α|s|ψ〉. (12)

This implies that there is another set of couplings, de-
termined by 〈α′| = 〈α|s that yields the same partition
function as the original set 〈α|.

B. Merge and deletion rules

We now present two rules, the merge and deletion rule,
which allow us to manipulate the partition function of
a model and relate it to the partition function of an-
other model. The intuitive picture is that the merge
rule applied to a model with, say, 4 faces, transforms
it to a model with 3 faces, one being larger, and con-
taining a 6–body instead of a 4–body interaction (see
Fig. ??(a)). And applying the deletion rule to a face
amounts to mapping it to a model where there is no such
face (see Fig. ??(b)). Although these rules can be gen-
erally defined for Zq LGTs, we will henceforth focus on
the case Z2, since this is what we require for the proof.

(a) (b)

FIG. 2: (a) The merge and (b) deletion rules are tools that
allow us to map one interaction pattern to another. Blue lines
indicate faces where there are interactions

Merge rule. The rule works by setting the coupling
strength of a face, say Jf , to infinity. In order to see its
effect, we consider (??), and we divide each coefficient by
a factor of eβJf ,

|α〉f =
∑

s1,...,sk

eβJf (cos[π(
P

e∈∂f se)mod 2]−1)|(
∑

e∈∂f

se)mod 2〉f .

(13)
Since this is a rescaling of the energy, this does not modify
the relevant physics that one can derive from the parti-
tion function. In Eq. (??) it is clear that when Jf → ∞,
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|s〉1 := |(sa + sb + sc + sd)mod q〉1

FIG. 1: The state |ψLGT〉 places one quantum particle (blue
dots, labeled with numbers) at each face, thereby characteriz-
ing the interaction of classical spins (black dots, labeled with
letters) around that face. The quantum spin at face f1, sf1

is
obtained by summing modulo q the values of the spins at the
boundary of the face.

and each column (edge) contains 2(d − 1) ones, where d
is the dimension of the lattice, and the rest are zeros. In
the case of open boundary conditions, the edges in the
boundary participate in only (d − 1) faces.

There is a standard way to compute the stabilizers out
of a matrix such as A (see, e.g. [? ]). We first note that
the rank of the matrix A depends on the dimension of
the lattice d. If A has full rank, then each column of
A corresponds to one X stabilizer, and there are no Z
stabilizers. If A does not have full rank, then a set of
m linearly independent columns in A corresponds to the
X stabilizers, and one has to find a set of |F | − m Z
stabilizers which are orthogonal to each other and to all
X stabilizers.

Via this procedure, one can see that the state |ψLGT〉
defined on a 2D square lattice with open boundary con-
ditions corresponds to the product state |+〉⊗|F |, where
|+〉 is the eigenstate of the Pauli matrix X , with eigen-
value +1, X |+〉 = |+〉. |ψLGT〉 defined on a 2D square
lattice with periodic boundary conditions corresponds to
the state |GHZ〉 = |0〉⊗|F | + |1〉⊗|F |. For higher dimen-
sional lattices, e.g. 3D lattices, the state |ψLGT〉 is less
trivial.

Below, we will use the state |ψLGT〉 defined on some
lattice as a resource for measurement–based quantum
computation [? ] in order to prove the completeness
of that LGT on that lattice. The fact that |ψLGT〉 de-
fined on a 2D lattice contains either no entanglement at
all (open boundary conditions) or a very small amount of
them (periodic boundary conditions), and thus are use-
less states from the point of view of measurement–based
quantum computation, is in agreement with the fact that
2D Z2 LGTs are trivial [? ] and cannot be complete.

As noticed in [? ], the fact that |ψLGT〉 is a stabilizer
state reveals some symmetries in the partition function.
That is, because |ψ〉 is left invariant under any opera-
tor s ∈ S, s|ψ〉 = |ψ〉, this translates into the following

invariance in the partition function

Z = 〈α|ψ〉 = 〈α|s|ψ〉. (12)

This implies that there is another set of couplings, de-
termined by 〈α′| = 〈α|s that yields the same partition
function as the original set 〈α|.

B. Merge and deletion rules

We now present two rules, the merge and deletion rule,
which allow us to manipulate the partition function of
a model and relate it to the partition function of an-
other model. The intuitive picture is that the merge
rule applied to a model with, say, 4 faces, transforms
it to a model with 3 faces, one being larger, and con-
taining a 6–body instead of a 4–body interaction (see
Fig. ??(a)). And applying the deletion rule to a face
amounts to mapping it to a model where there is no such
face (see Fig. ??(b)). Although these rules can be gen-
erally defined for Zq LGTs, we will henceforth focus on
the case Z2, since this is what we require for the proof.

(a) (b)

FIG. 2: (a) The merge and (b) deletion rules are tools that
allow us to map one interaction pattern to another. Blue lines
indicate faces where there are interactions

Merge rule. The rule works by setting the coupling
strength of a face, say Jf , to infinity. In order to see its
effect, we consider (??), and we divide each coefficient by
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|0〉f state, and imposes the condition (
∑

e∈∂f se)mod2 = 0
on the remaining terms. Due to this condition, one of
the spins around f is not free anymore, but equals the
sum of the other k − 1 spins (since it is mod 2), say
sb = sa +sc +sd in Fig. ??. This condition is substituted
in another face where sb participates, e.g. in Fig. ??, the
face depending on sh +sg +se +sb becomes sh +sg +se +
sa + sc + sd. Thus, this effectively enlarges the face, that
is, a 4–body Ising–type interaction has become a 6–body
Ising–type interaction by means of the merge rule. Note
that this remaining 6–body interaction has a coupling
strength given by the face which has been enlarged (see
Fig. ??).

aa

b b

cc

dd

ee

gg

hh

ff

Jf = ∞ Jbegh Jadcegh

33 44

=

FIG. 3: Merge rule. Setting Jf = ∞ sets the condition sa +
sb + sc + sd = 0, and thus, one of the variables becomes
dependent, say sb = sa + sc + sd. This is substituted in the
right face, which now depends on sh+sg+se+sa+sc+sd, i.e. a
6–body Ising–type interaction, with the coupling strength of
the enlarged face, Jbegh (now Jabcegh).

The concatenation of merge rules and the gauge fixing
of some particles allow us to achieve k–body Ising inter-
actions, for any k. For example, in order to generate a
5–body interaction, we would apply the same process as
in Fig. ??, and we would gauge fix one of the spins at the
boundary, say sa.

Note that selecting what particle on the boundary of
f is dependent on the others is an arbitrary choice. That
is, the face f in Fig. ?? could have been merged with
the lower or right face (sc, sb dependent, respectively;
see Fig. ??), or with other faces if had more than 2 di-
mensions. However, all choices yield equivalent partition
functions. It is even possible to choose a different depen-
dent variable for every neighboring face, that is, substi-
tute the condition for sb on the right face, the condition
for sa on the upper face, and so on. However, this does
not lead to any known model.

We also remark that using the merge rule to transform
a k–body interaction to a k′–body interaction, with k′ >
k, is only possible if k ≥ 3, since

k′ = 2k − 2, (15)

(In the case of k = 2 the spins would we sitting in
the vertices and the interactions would be through the
edges; however, the argument still holds true: applying
the merge rule along an edge simply creates more 2–body
interactions).
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ff

ii

jj

Jf ′ = ∞ 22

Jdabfij 33Jcfij

=

FIG. 4: Once we set Jf = ∞ it is arbitrary to choose in what
direction this face is merged. Here, sc is chosen to be the
dependent variable, and thus f is merged downwards.

Deletion rule. This rule is obtained by setting Jf = 0,
that is, by deleting the interaction at face f (Fig. ??).
Note that this corresponds to projecting the face f onto
the state |+〉 = |0〉 + |1〉, i.e. |αf (Jf = 0)〉 = |+〉.

aa

bb
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dd

ee

gg

hh

Jf = 0 JbeghJbegh
=

FIG. 5: Deletion rule. Setting Jf = 0 deletes the interaction
in that face.

C. Method to obtain general n−body interactions

Here we show that a totally general interaction be-
tween n 2–level particles can be generated if all k–
body Ising–type interactions between these n particles
are available, for any subset of k particles, and all
k = 0, 1, . . . , n. An interaction pattern between n par-
ticles with all possible k–body interactions is called a
k–clique. We coin the term superclique for an interaction
pattern between n particles containing all k–cliques, for
all k = 0, 1, 2, . . . , n [? ]. A “superclique of Ising–type in-
teractions” is a superclique such that all its interactions
are Ising–type; in this work, when we refer to a super-
clique, we will mean this kind of superclique. Hence,
we claim that a totally general interaction between n
particles can be generated by preparing a superclique of
Ising–type interactions among them, and tuning its cou-
pling strengths appropriately.

In order to prove the claim, first note that a general
interaction between n spins corresponds to assigning a
different energy λs to each spin configuration s. Let us
indicate with a subindex on the coupling strength which
particles participate in a given interaction of the super-
clique; e.g. J123 is the coupling strength of the 3–body
interaction between s1, s2 and s3. Hence, we need to
show that the coupling strengths in the superclique can

Fixing the spins using the gauge symmetry:
No loops!

Deletion rule:

Merge rule:
Jbegh Jadcegh

a

c

d

e

=

a

b

c

d

e

b g
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Jf = ∞

sb = sa + sc + sd

Completeness of the 4D     LGTZ2
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cializes to a general n–body interaction. Note that here
the dependence on r1 and r2 also cancels, since the large
blue face depends on each of them twice (and the sum is
mod 2, thus r1 + r1 = 0, and similarly for r2).

4–body interactions can be generated similarly. In
this case, the four logical particles are distributed close
to each other as shown in Fig. ??, and all cover faces
are merged to give rise to the Ising–type interaction
J1234(−1)s1+s2+s3+s4 . The procedure for the 5–body in-
teraction analogous; in this case, one adds one more log-
ical spin and merges the overall cover face (see ??).

s1

s2

s3

s4

r1

r2

r3

J1234

FIG. 9: 4–body Ising–type interaction between spins s1, s2, s3

and s4 with coupling strength J1234 . See the caption of Fig. ??
for an explanation of the symbols.

s1

s2

s3

s4

s5

r1

r2

r3

r4

J12345

FIG. 10: 5–body Ising–type interaction
J12345(−1)s1+s2+s3+s4+s5 . See the caption of Fig. ??
for an explanation of the symbols.

The generalization to k–body Ising–type interactions,
for arbitrary k, is straightforward. First, one propagates
each of the “logical spins” s1, . . . , sk in the lattice un-
til they are as close to each other as possible, forming
a “rectangular” shape without their red u–shapes touch-
ing each other (as is the case for the 2–, 3–, 4– and 5–
body interaction shown above). One can imagine this as
adding more logical particles on the right of the 5–body
interaction of Fig. ??, thereby enlarging the “rectangle”
in length, until one has k logical particles, analogously
to how particles have been “added” in the generation
of the 5–body interaction when compared with a 3– or
4–body interaction. Then one merges all cover faces ex-
cept for one. This renders the k–body Ising–type interac-
tion J1...k(−1)s1+...+sk , where the coupling J1...k is deter-
mined by the only cover face that has not been merged.
The dependence on all auxiliary spins r1, r2, . . . will can-
cel because, by construction, the boundary of the merged
face depends on them twice. The coupling strengths J1...k

will be tuned so that the Hamilton function of the super-
clique equals the Hamilton function of the specific final

model (which we will refer to as the “target” model),
according to Eq. (??).

Thus, we have shown how to obtain k−body Ising–
type interactions, for any k = 1, . . . , n. Now we must let
each spin participate in 2n−1 interactions, as pointed out
in (??). However, we have seen that a spin propagates
as in Fig. ??, and this propagation ends in a certain face
(called an “end”) that participates in a k–body interac-
tion. There it is clear that spin s1 can only participate in
two interactions, corresponding to the left and right ends.
More generally, the number of ends that an object (or en-
coded particle) of dimension de in a lattice of dimension
d has are 2(d − de). Here the logical spin is never prop-
agated alone, but always “carries” the other three spins
of an adjacent face fixed (i.e. the shape of Fig. ??(a) is
propagated), hence we essentially have de = 2. So, for
d = 3 the particle is blocked to have only 2 ends. We
need to resort to a 4D lattice to obtain 2(d − de) > 2
ends (see Fig. ?? for a replication in four dimensions of
one spin into five other ends). Then, this replication pro-
cedure can be multiply applied until the particle has 2n−1

ends, that is, one end for each interaction. Note that in
this replication procedure no loops of spins fixed by the
gauge are formed.

s3 s2 s1

s4s5 s6

s7 s9
s8

r6

r3

r2 r1

r4 r5r5

r7 r8r8

FIG. 11: Replication of spins in a 4D lattice: s1 is replicated
into s3, s5, s6, s8, s9. Yellow faces have the same meaning as
blue faces, that is, s2 propagates into s3 by the same means
as it propagates into s7. Note that no loops of red spins are
formed.

We remark that all faces which are not mentioned in
this construction have to be deleted using the deletion
rule. We also mention that we have tried several other
procedures in order to obtain this result in 3D, but none
of them could avoid the formation of loops of edges fixed
by the gauge.

The specific layout of interactions in the superclique is
the following. The logical particles are distributed along

4-body
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5-body

Construction of many-body Ising-type int.:

...

2-body

Xn

k¼0

n
k

! "
¼ 2n

J’s (columns), and 2n !s’s (rows). But by construction all
rows are linearly independent; hence, it has a nonzero
determinant, and thus it is invertible.

2.4. Explicit construction.—We now use the tools of
Sect. 2.2 in order to show that we can obtain all interactions
required in Sect. 2.3 in a 4DZ2 LGT. The proof will require
fixing some spins using the gauge symmetry of the model
(i.e., fixing them to zero while leaving the Hamilton func-
tion invariant), a technique which can be applied as long as
the edges whose spins are fixed form at most a maximal
tree (i.e., do not form a closed loop) [11].

First, a ‘‘single-body interaction’’ of s1 (analogous to a
magnetic field) is obtained by letting s1 interact with all
other spins around a face fixed by the gauge [Fig. 2(a)].

A two-body interaction is obtained by merging the front,
lower and back face and creating the face with blue
boundaries of Fig. 2(b). By fixing with the gauge six of
the spins at the boundary of the blue face, this face depends
only on s1 þ s2 þ rþ r ¼ s1 þ s2 (since the sum is
mod 2) [see Fig. 2(b)]. Thus, this effectively corresponds
to a two-body Ising-type interaction between s1 and s2 with
an interaction strength J12. Notice that by setting J12 ¼ 1
as well, we force s1 þ s2 ¼ 0, which can be seen as a
propagation of s1 into s2 (since s1 ¼ s2). A concatenated
application of this two-body interaction results in an effec-
tive propagation of a spin through a certain path (the turn-
ings of the path can be done similarly).

A three-body interaction is obtained by bringing three
spins s1, s2, s3 close to each other and then merging the
large blue face as indicated in Fig. 2(c). The interaction in
the blue face corresponds to a three-body Ising-type inter-
action between s1, s2 and s3 (since r1 and r2 are summed
twice) and with an interaction strength J123.

The generalization to k-body interactions with k # 4
can be done in a similar way as in Fig. 2(c). The spins sj
taking place in the final k-body interaction are never ad-
jacent, and each of them is part of a face at the front, back
or side with three spins fixed by the gauge (red u shapes).
All but one of the remaining faces are merged, and the
interaction strength J1...k in that face determines the k-body
Ising-type interaction.

Thus we have shown how to obtain k-body Ising-type
interactions between any group of k particles, for k ¼
1; . . . ; n (the zero-body interaction required in 2.3 is a
constant factor, so we obtain Z up to this factor). Since
the total number of interactions is 2n, we only need to show
that a given spin can participate in 2n=n interactions. This
means that each spin must have this number of ‘‘end
faces’’, i.e., faces at the end of a propagation that partici-
pate in a (many-body) interaction. For example, if we use
Fig. 2(b) to propagate s1 (i.e. we set J12 ¼ 1), then s1 has
two end faces, the left and the right one, each of which can
participate in, say, a three-body interaction like the one
shown in Fig. 2(c). But, as can be seen from Fig. 2(b), the
propagation of a particle (in 3D) essentially behaves as a
‘‘pipe’’ which has only two end faces. In fact, the number
of ends that an encoded particle of dimension de in a lattice
of dimension d can have are 2ðd% deÞ. Here we essentially
have de ¼ 2, and thus for d ¼ 3 the particle is blocked to
have only 2 ends. We need to resort to a 4D lattice in order
to obtain 2ðd% deÞ> 2 ends, and then this replication in
different directions can be multiply applied until the par-
ticle has 2n=n ends (see Fig. 3 for a replication of one spin
s1 into three other ‘‘end faces’’ s3, s5 and s6). We refer the
reader to [12] for the detailed construction. We remark that
all faces which are not mentioned in this construction have
to be deleted using the deletion rule. We also mention that
we have tried several other procedures to obtain this result
in 3D, but none of them could avoid the formation of loops
of edges fixed by the gauge.
This proves that we can generate a totally general

n-body interaction between n particles in a 4D Z2 LGT.
This includes all classical spin models with q ¼ 2 in
arbitrary dimensions d, arbitrary graphs, and arbitrary
interaction pattern. Moreover, by encoding a q-level par-
ticle in mq ¼ dlogqe two-level particles, this also includes
general interactions between n0 q-level particles, with n0 ¼
n=mq. This proves that the 4D Z2 LGT is complete for all
Abelian discrete classical spin models, including all
Abelian discrete LGTs and discrete SSMs.
2.5. Approximate completeness for Abelian continuous

LGTs and continuous SSMs.—We can go further and show
that the 4D Z2 LGT is also approximately complete for
Abelian continuous models, that is, the partition function
of a continuous model can be expressed, up to a certain
accuracy, as a specific instance of the partition function of
the 4D Z2 LGT. To see this, we just need to let q ! 1 (the
lattice spacing remaining discrete) and determine what
approximation can be obtained (see below).
2.6. Efficiency results.—The construction presented

above enables one to generate, from a 4D Z2 LGT,
Hamilton functions that contain M terms with at most
k-body interactions with an overhead that scales poly(M,
2k) for q ¼ 2. In the case of q-state models withM general

k0-body interaction terms, at most 2k
0mq Ising-type inter-

actions between k0mq two-level particles are required for
each term. Therefore, the overhead in the system size of the

FIG. 2 (color online). Spins fixed by the gauge are marked in
red. A single-body, a two-body and a three-body Ising-type
interaction with coupling strengths J1, J12, and J123 are shown
in (a), (b), and (c), respectively.
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J’s (columns), and 2n !s’s (rows). But by construction all
rows are linearly independent; hence, it has a nonzero
determinant, and thus it is invertible.

2.4. Explicit construction.—We now use the tools of
Sect. 2.2 in order to show that we can obtain all interactions
required in Sect. 2.3 in a 4DZ2 LGT. The proof will require
fixing some spins using the gauge symmetry of the model
(i.e., fixing them to zero while leaving the Hamilton func-
tion invariant), a technique which can be applied as long as
the edges whose spins are fixed form at most a maximal
tree (i.e., do not form a closed loop) [11].

First, a ‘‘single-body interaction’’ of s1 (analogous to a
magnetic field) is obtained by letting s1 interact with all
other spins around a face fixed by the gauge [Fig. 2(a)].

A two-body interaction is obtained by merging the front,
lower and back face and creating the face with blue
boundaries of Fig. 2(b). By fixing with the gauge six of
the spins at the boundary of the blue face, this face depends
only on s1 þ s2 þ rþ r ¼ s1 þ s2 (since the sum is
mod 2) [see Fig. 2(b)]. Thus, this effectively corresponds
to a two-body Ising-type interaction between s1 and s2 with
an interaction strength J12. Notice that by setting J12 ¼ 1
as well, we force s1 þ s2 ¼ 0, which can be seen as a
propagation of s1 into s2 (since s1 ¼ s2). A concatenated
application of this two-body interaction results in an effec-
tive propagation of a spin through a certain path (the turn-
ings of the path can be done similarly).

A three-body interaction is obtained by bringing three
spins s1, s2, s3 close to each other and then merging the
large blue face as indicated in Fig. 2(c). The interaction in
the blue face corresponds to a three-body Ising-type inter-
action between s1, s2 and s3 (since r1 and r2 are summed
twice) and with an interaction strength J123.

The generalization to k-body interactions with k # 4
can be done in a similar way as in Fig. 2(c). The spins sj
taking place in the final k-body interaction are never ad-
jacent, and each of them is part of a face at the front, back
or side with three spins fixed by the gauge (red u shapes).
All but one of the remaining faces are merged, and the
interaction strength J1...k in that face determines the k-body
Ising-type interaction.

Thus we have shown how to obtain k-body Ising-type
interactions between any group of k particles, for k ¼
1; . . . ; n (the zero-body interaction required in 2.3 is a
constant factor, so we obtain Z up to this factor). Since
the total number of interactions is 2n, we only need to show
that a given spin can participate in 2n=n interactions. This
means that each spin must have this number of ‘‘end
faces’’, i.e., faces at the end of a propagation that partici-
pate in a (many-body) interaction. For example, if we use
Fig. 2(b) to propagate s1 (i.e. we set J12 ¼ 1), then s1 has
two end faces, the left and the right one, each of which can
participate in, say, a three-body interaction like the one
shown in Fig. 2(c). But, as can be seen from Fig. 2(b), the
propagation of a particle (in 3D) essentially behaves as a
‘‘pipe’’ which has only two end faces. In fact, the number
of ends that an encoded particle of dimension de in a lattice
of dimension d can have are 2ðd% deÞ. Here we essentially
have de ¼ 2, and thus for d ¼ 3 the particle is blocked to
have only 2 ends. We need to resort to a 4D lattice in order
to obtain 2ðd% deÞ> 2 ends, and then this replication in
different directions can be multiply applied until the par-
ticle has 2n=n ends (see Fig. 3 for a replication of one spin
s1 into three other ‘‘end faces’’ s3, s5 and s6). We refer the
reader to [12] for the detailed construction. We remark that
all faces which are not mentioned in this construction have
to be deleted using the deletion rule. We also mention that
we have tried several other procedures to obtain this result
in 3D, but none of them could avoid the formation of loops
of edges fixed by the gauge.
This proves that we can generate a totally general

n-body interaction between n particles in a 4D Z2 LGT.
This includes all classical spin models with q ¼ 2 in
arbitrary dimensions d, arbitrary graphs, and arbitrary
interaction pattern. Moreover, by encoding a q-level par-
ticle in mq ¼ dlogqe two-level particles, this also includes
general interactions between n0 q-level particles, with n0 ¼
n=mq. This proves that the 4D Z2 LGT is complete for all
Abelian discrete classical spin models, including all
Abelian discrete LGTs and discrete SSMs.
2.5. Approximate completeness for Abelian continuous

LGTs and continuous SSMs.—We can go further and show
that the 4D Z2 LGT is also approximately complete for
Abelian continuous models, that is, the partition function
of a continuous model can be expressed, up to a certain
accuracy, as a specific instance of the partition function of
the 4D Z2 LGT. To see this, we just need to let q ! 1 (the
lattice spacing remaining discrete) and determine what
approximation can be obtained (see below).
2.6. Efficiency results.—The construction presented

above enables one to generate, from a 4D Z2 LGT,
Hamilton functions that contain M terms with at most
k-body interactions with an overhead that scales poly(M,
2k) for q ¼ 2. In the case of q-state models withM general

k0-body interaction terms, at most 2k
0mq Ising-type inter-

actions between k0mq two-level particles are required for
each term. Therefore, the overhead in the system size of the

FIG. 2 (color online). Spins fixed by the gauge are marked in
red. A single-body, a two-body and a three-body Ising-type
interaction with coupling strengths J1, J12, and J123 are shown
in (a), (b), and (c), respectively.
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J’s (columns), and 2n !s’s (rows). But by construction all
rows are linearly independent; hence, it has a nonzero
determinant, and thus it is invertible.

2.4. Explicit construction.—We now use the tools of
Sect. 2.2 in order to show that we can obtain all interactions
required in Sect. 2.3 in a 4DZ2 LGT. The proof will require
fixing some spins using the gauge symmetry of the model
(i.e., fixing them to zero while leaving the Hamilton func-
tion invariant), a technique which can be applied as long as
the edges whose spins are fixed form at most a maximal
tree (i.e., do not form a closed loop) [11].

First, a ‘‘single-body interaction’’ of s1 (analogous to a
magnetic field) is obtained by letting s1 interact with all
other spins around a face fixed by the gauge [Fig. 2(a)].

A two-body interaction is obtained by merging the front,
lower and back face and creating the face with blue
boundaries of Fig. 2(b). By fixing with the gauge six of
the spins at the boundary of the blue face, this face depends
only on s1 þ s2 þ rþ r ¼ s1 þ s2 (since the sum is
mod 2) [see Fig. 2(b)]. Thus, this effectively corresponds
to a two-body Ising-type interaction between s1 and s2 with
an interaction strength J12. Notice that by setting J12 ¼ 1
as well, we force s1 þ s2 ¼ 0, which can be seen as a
propagation of s1 into s2 (since s1 ¼ s2). A concatenated
application of this two-body interaction results in an effec-
tive propagation of a spin through a certain path (the turn-
ings of the path can be done similarly).

A three-body interaction is obtained by bringing three
spins s1, s2, s3 close to each other and then merging the
large blue face as indicated in Fig. 2(c). The interaction in
the blue face corresponds to a three-body Ising-type inter-
action between s1, s2 and s3 (since r1 and r2 are summed
twice) and with an interaction strength J123.

The generalization to k-body interactions with k # 4
can be done in a similar way as in Fig. 2(c). The spins sj
taking place in the final k-body interaction are never ad-
jacent, and each of them is part of a face at the front, back
or side with three spins fixed by the gauge (red u shapes).
All but one of the remaining faces are merged, and the
interaction strength J1...k in that face determines the k-body
Ising-type interaction.

Thus we have shown how to obtain k-body Ising-type
interactions between any group of k particles, for k ¼
1; . . . ; n (the zero-body interaction required in 2.3 is a
constant factor, so we obtain Z up to this factor). Since
the total number of interactions is 2n, we only need to show
that a given spin can participate in 2n=n interactions. This
means that each spin must have this number of ‘‘end
faces’’, i.e., faces at the end of a propagation that partici-
pate in a (many-body) interaction. For example, if we use
Fig. 2(b) to propagate s1 (i.e. we set J12 ¼ 1), then s1 has
two end faces, the left and the right one, each of which can
participate in, say, a three-body interaction like the one
shown in Fig. 2(c). But, as can be seen from Fig. 2(b), the
propagation of a particle (in 3D) essentially behaves as a
‘‘pipe’’ which has only two end faces. In fact, the number
of ends that an encoded particle of dimension de in a lattice
of dimension d can have are 2ðd% deÞ. Here we essentially
have de ¼ 2, and thus for d ¼ 3 the particle is blocked to
have only 2 ends. We need to resort to a 4D lattice in order
to obtain 2ðd% deÞ> 2 ends, and then this replication in
different directions can be multiply applied until the par-
ticle has 2n=n ends (see Fig. 3 for a replication of one spin
s1 into three other ‘‘end faces’’ s3, s5 and s6). We refer the
reader to [12] for the detailed construction. We remark that
all faces which are not mentioned in this construction have
to be deleted using the deletion rule. We also mention that
we have tried several other procedures to obtain this result
in 3D, but none of them could avoid the formation of loops
of edges fixed by the gauge.
This proves that we can generate a totally general

n-body interaction between n particles in a 4D Z2 LGT.
This includes all classical spin models with q ¼ 2 in
arbitrary dimensions d, arbitrary graphs, and arbitrary
interaction pattern. Moreover, by encoding a q-level par-
ticle in mq ¼ dlogqe two-level particles, this also includes
general interactions between n0 q-level particles, with n0 ¼
n=mq. This proves that the 4D Z2 LGT is complete for all
Abelian discrete classical spin models, including all
Abelian discrete LGTs and discrete SSMs.
2.5. Approximate completeness for Abelian continuous

LGTs and continuous SSMs.—We can go further and show
that the 4D Z2 LGT is also approximately complete for
Abelian continuous models, that is, the partition function
of a continuous model can be expressed, up to a certain
accuracy, as a specific instance of the partition function of
the 4D Z2 LGT. To see this, we just need to let q ! 1 (the
lattice spacing remaining discrete) and determine what
approximation can be obtained (see below).
2.6. Efficiency results.—The construction presented

above enables one to generate, from a 4D Z2 LGT,
Hamilton functions that contain M terms with at most
k-body interactions with an overhead that scales poly(M,
2k) for q ¼ 2. In the case of q-state models withM general

k0-body interaction terms, at most 2k
0mq Ising-type inter-

actions between k0mq two-level particles are required for
each term. Therefore, the overhead in the system size of the

FIG. 2 (color online). Spins fixed by the gauge are marked in
red. A single-body, a two-body and a three-body Ising-type
interaction with coupling strengths J1, J12, and J123 are shown
in (a), (b), and (c), respectively.
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the Hamilton function of a totally general interaction
of n 2–level particles (e.g. including complicated many–
body interactions, etc) equals the Hamilton function of a
complicated interaction pattern (a superclique), but with
simple interactions (Ising–type interactions). This map-
ping may have applications in the Hamiltonian formula-
tion of LGTs [? ] and in their renormalization group
analysis [? ].

D. Explicit construction of the superclique

In the following we show that we can construct a su-
perclique of Ising–type interactions from a 4D Z2 LGT.
Because of the result of the previous section, this means
that, by tuning the coupling strengths of the Ising–type
interactions in the superclique, this model can specialize
to any other (Abelian, discrete) classical spin model.

In order to generate the superclique starting from the
4D Z2 LGT we will only make use of the merge and
deletion rule, and of the gauge fixing.

We will first show the generation of k–body Ising–type
interactions, for any k = 1, . . . , n in a 3D Z2 LGT. Then
we will argue that the fourth dimension is needed to repli-
cate the spins, and thereby let each spin participate in
all the interactions required in the superclique.

First, a “single–body” Ising–type interaction of s1

(analogous to a magnetic field), i.e. J1(−1)s1 , is obtained
by letting s1 interact with all other spins around a face
fixed by the gauge (see Fig. ??(a)).

s1 s1

s2

s1

s2

s3

r r1

r2

(a) (b) (c)

J1

J12 J123

FIG. 6: “Logical” spins (i.e. the spins that will participate in
the final superclique) are marked in bold black. Blue shaded
faces indicate merged faces as in Fig. ??, and spins fixed by
the gauge are marked in red. Figures (a), (b) and (c) show
a single–body, a 2–body and a 3–body Ising–type interaction
with coupling strengths J1, J12 and J123 respectively. Spin r
does not participate in the interaction because the blue face
depends on them twice, i.e. r + r = 0, and the same holds for
r1 and r2.

A 2–body Ising–type interaction is obtained by con-
catenating the merge rule on the front, lower and back
face of a cube and creating the face with blue boundaries
of Fig. ??(b). This face depends on all of the spins at its
boundary (i.e. all spins which are attached to the thick,
blue line in Fig. ??(b), e.g. the upper, right, and left
spins on the front face, the lateral spins on the lower face,
etc). However, six of these spins are fixed by the gauge
(red spins in Fig. ??(b)), that is, their value is fixed to
zero. Hence, the big blue face only depends on the spins

which are not fixed, that is on s1 + s2 + r + r = s1 + s2

(since the sum is performed mod 2). This corresponds
to the 2–body Ising–type interaction between s1 and s2

with coupling strength determined by the only face which
has not been merged (the upper face), viz. J12(−1)s1+s2 .
Furthermore, notice that by setting J12 = ∞ as well, one
enforces s1 + s2 = 0, i.e. s1 = s2. This can be seen as
a “propagation” of the value of s1 into s2. A concate-
nated application of this 2–body interaction results in an
effective propagation of a spin through a certain path in
the lattice (see Fig. ??). The direction of this propaga-
tion can be changed by merging all “covering” faces be-
tween the incoming and the outgoing spin, as indicated
in Fig. ??. This will be important in the construction
of the superclique, where one needs to propagate logical
particles in the 4D lattice to bring to the place where the
interaction occurs.

s1 s2 s3

r1 r2

FIG. 7: Propagation of a s1 to s3 by concatenating 2–body
interactions with J12 = ∞. Particle s1 has two ends (i.e. faces
that can participate in a k–body interaction): itself, and the
right face where s3 is.

s1s1s1

s1

s2

s2

r
r

(a) (b)

FIG. 8: (a) Turn in the path from a left–to–right propagation
(“incoming” spin s1) to a down–to–up propagation (“outgo-
ing” spin s2). (b) Similar turn, but here s2 propagates from
back to front. The dependence of each blue face on r cancels
because it depends twice on it.

In order to generate a 3–body Ising–type interaction,
one propagates three “logical” spins in the lattice in order
to bring as close to each other as possible, with the con-
dition that their “red u–shapes” are not adjacent. Then
ones merges all but one of the “cover” faces into a large
blue face as indicated in Fig. ??(c). This blue face now
contains the interaction J123(−1)s1+s2+s3 , that is, a 3–
body Ising–type interaction between s1, s2 and s3 as re-
quired. The interaction strength J123 is determined by
the only face that has not been merged, and it is this
parameter that will be tuned so that the superclique spe-
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the Hamilton function of a totally general interaction
of n 2–level particles (e.g. including complicated many–
body interactions, etc) equals the Hamilton function of a
complicated interaction pattern (a superclique), but with
simple interactions (Ising–type interactions). This map-
ping may have applications in the Hamiltonian formula-
tion of LGTs [? ] and in their renormalization group
analysis [? ].

D. Explicit construction of the superclique

In the following we show that we can construct a su-
perclique of Ising–type interactions from a 4D Z2 LGT.
Because of the result of the previous section, this means
that, by tuning the coupling strengths of the Ising–type
interactions in the superclique, this model can specialize
to any other (Abelian, discrete) classical spin model.

In order to generate the superclique starting from the
4D Z2 LGT we will only make use of the merge and
deletion rule, and of the gauge fixing.

We will first show the generation of k–body Ising–type
interactions, for any k = 1, . . . , n in a 3D Z2 LGT. Then
we will argue that the fourth dimension is needed to repli-
cate the spins, and thereby let each spin participate in
all the interactions required in the superclique.

First, a “single–body” Ising–type interaction of s1

(analogous to a magnetic field), i.e. J1(−1)s1 , is obtained
by letting s1 interact with all other spins around a face
fixed by the gauge (see Fig. ??(a)).
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FIG. 6: “Logical” spins (i.e. the spins that will participate in
the final superclique) are marked in bold black. Blue shaded
faces indicate merged faces as in Fig. ??, and spins fixed by
the gauge are marked in red. Figures (a), (b) and (c) show
a single–body, a 2–body and a 3–body Ising–type interaction
with coupling strengths J1, J12 and J123 respectively. Spin r
does not participate in the interaction because the blue face
depends on them twice, i.e. r + r = 0, and the same holds for
r1 and r2.

A 2–body Ising–type interaction is obtained by con-
catenating the merge rule on the front, lower and back
face of a cube and creating the face with blue boundaries
of Fig. ??(b). This face depends on all of the spins at its
boundary (i.e. all spins which are attached to the thick,
blue line in Fig. ??(b), e.g. the upper, right, and left
spins on the front face, the lateral spins on the lower face,
etc). However, six of these spins are fixed by the gauge
(red spins in Fig. ??(b)), that is, their value is fixed to
zero. Hence, the big blue face only depends on the spins

which are not fixed, that is on s1 + s2 + r + r = s1 + s2

(since the sum is performed mod 2). This corresponds
to the 2–body Ising–type interaction between s1 and s2

with coupling strength determined by the only face which
has not been merged (the upper face), viz. J12(−1)s1+s2 .
Furthermore, notice that by setting J12 = ∞ as well, one
enforces s1 + s2 = 0, i.e. s1 = s2. This can be seen as
a “propagation” of the value of s1 into s2. A concate-
nated application of this 2–body interaction results in an
effective propagation of a spin through a certain path in
the lattice (see Fig. ??). The direction of this propaga-
tion can be changed by merging all “covering” faces be-
tween the incoming and the outgoing spin, as indicated
in Fig. ??. This will be important in the construction
of the superclique, where one needs to propagate logical
particles in the 4D lattice to bring to the place where the
interaction occurs.

s1 s2 s3

r1 r2

FIG. 7: Propagation of a s1 to s3 by concatenating 2–body
interactions with J12 = ∞. Particle s1 has two ends (i.e. faces
that can participate in a k–body interaction): itself, and the
right face where s3 is.
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r
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FIG. 8: (a) Turn in the path from a left–to–right propagation
(“incoming” spin s1) to a down–to–up propagation (“outgo-
ing” spin s2). (b) Similar turn, but here s2 propagates from
back to front. The dependence of each blue face on r cancels
because it depends twice on it.

In order to generate a 3–body Ising–type interaction,
one propagates three “logical” spins in the lattice in order
to bring as close to each other as possible, with the con-
dition that their “red u–shapes” are not adjacent. Then
ones merges all but one of the “cover” faces into a large
blue face as indicated in Fig. ??(c). This blue face now
contains the interaction J123(−1)s1+s2+s3 , that is, a 3–
body Ising–type interaction between s1, s2 and s3 as re-
quired. The interaction strength J123 is determined by
the only face that has not been merged, and it is this
parameter that will be tuned so that the superclique spe-
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cializes to a general n–body interaction. Note that here
the dependence on r1 and r2 also cancels, since the large
blue face depends on each of them twice (and the sum is
mod 2, thus r1 + r1 = 0, and similarly for r2).

4–body interactions can be generated similarly. In
this case, the four logical particles are distributed close
to each other as shown in Fig. ??, and all cover faces
are merged to give rise to the Ising–type interaction
J1234(−1)s1+s2+s3+s4 . The procedure for the 5–body in-
teraction analogous; in this case, one adds one more log-
ical spin and merges the overall cover face (see ??).

s1

s2

s3

s4

r1

r2

r3

J1234

FIG. 9: 4–body Ising–type interaction between spins s1, s2, s3

and s4 with coupling strength J1234 . See the caption of Fig. ??
for an explanation of the symbols.

s1

s2

s3

s4

s5

r1

r2

r3

r4

J12345

FIG. 10: 5–body Ising–type interaction
J12345(−1)s1+s2+s3+s4+s5 . See the caption of Fig. ??
for an explanation of the symbols.

The generalization to k–body Ising–type interactions,
for arbitrary k, is straightforward. First, one propagates
each of the “logical spins” s1, . . . , sk in the lattice un-
til they are as close to each other as possible, forming
a “rectangular” shape without their red u–shapes touch-
ing each other (as is the case for the 2–, 3–, 4– and 5–
body interaction shown above). One can imagine this as
adding more logical particles on the right of the 5–body
interaction of Fig. ??, thereby enlarging the “rectangle”
in length, until one has k logical particles, analogously
to how particles have been “added” in the generation
of the 5–body interaction when compared with a 3– or
4–body interaction. Then one merges all cover faces ex-
cept for one. This renders the k–body Ising–type interac-
tion J1...k(−1)s1+...+sk , where the coupling J1...k is deter-
mined by the only cover face that has not been merged.
The dependence on all auxiliary spins r1, r2, . . . will can-
cel because, by construction, the boundary of the merged
face depends on them twice. The coupling strengths J1...k

will be tuned so that the Hamilton function of the super-
clique equals the Hamilton function of the specific final

model (which we will refer to as the “target” model),
according to Eq. (??).

Thus, we have shown how to obtain k−body Ising–
type interactions, for any k = 1, . . . , n. Now we must let
each spin participate in 2n−1 interactions, as pointed out
in (??). However, we have seen that a spin propagates
as in Fig. ??, and this propagation ends in a certain face
(called an “end”) that participates in a k–body interac-
tion. There it is clear that spin s1 can only participate in
two interactions, corresponding to the left and right ends.
More generally, the number of ends that an object (or en-
coded particle) of dimension de in a lattice of dimension
d has are 2(d − de). Here the logical spin is never prop-
agated alone, but always “carries” the other three spins
of an adjacent face fixed (i.e. the shape of Fig. ??(a) is
propagated), hence we essentially have de = 2. So, for
d = 3 the particle is blocked to have only 2 ends. We
need to resort to a 4D lattice to obtain 2(d − de) > 2
ends (see Fig. ?? for a replication in four dimensions of
one spin into five other ends). Then, this replication pro-
cedure can be multiply applied until the particle has 2n−1

ends, that is, one end for each interaction. Note that in
this replication procedure no loops of spins fixed by the
gauge are formed.

s3 s2 s1

s4s5 s6

s7 s9
s8

r6

r3

r2 r1

r4 r5r5

r7 r8r8

FIG. 11: Replication of spins in a 4D lattice: s1 is replicated
into s3, s5, s6, s8, s9. Yellow faces have the same meaning as
blue faces, that is, s2 propagates into s3 by the same means
as it propagates into s7. Note that no loops of red spins are
formed.

We remark that all faces which are not mentioned in
this construction have to be deleted using the deletion
rule. We also mention that we have tried several other
procedures in order to obtain this result in 3D, but none
of them could avoid the formation of loops of edges fixed
by the gauge.

The specific layout of interactions in the superclique is
the following. The logical particles are distributed along

Replication

4th dimension 
required to 
avoid loops!

 Construction of the superclique

Completeness of the 4D     LGTZ2
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the x direction with one “idle” space among them (see
Fig. ??). Then each of them is propagated in the y di-
rection. The idea is to use this 3D space (i.e. the space
with w = 0) to propagate the particles, and to use the
3D space defined by w = 1 to create the interactions
required for the superclique.

For example, in Fig. ?? we see 3 logical particles along
the x direction which are propagated in the y direction.
Then, at some sites, they are also propagated to the space
defined by w = 1. In particular, in the first site, they are
all propagated to w = 1, where the 1–body interaction of
each of the particles will take place. In the following site,
s1 and s2 are propagated to w = 1, in order to gener-
ate the 2–body interaction among them. After some idle
propagation in the y direction (precisely, A(2) idle sites,
as will be explained below), s1 and s3 are propagated
to the space w = 1, where they will generate a 2–body
interaction among them. This goes on for all 2–body in-
teractions, then for all 3–body interactions, 4–body, and
so on, up to the n–body interaction. For example, the 4–
body interaction between s1, s2, s3, s4 and then between
s1, s2, s3, s5 are shown in Figs. ??, ??.

...

...

...

...

...

......

s1s1s1s1 s1s1s1s1s1s1 s1s1s1s1s1

s2s2s2s2s2s2s2 s2s2s2s2s2s2 s2s2s2s2s2s2s2s2s2

s3s3s3 s3s3s3 s3s3s3s3 s3s3s3s3s3

x
y

z w

sis1, s2s1, s3
A(2)

FIG. 12: 3D space with w = 0. Logical particles are dis-
tributed along the x direction and they are propagated along
the y direction.

Note that the idle space one has to leave in the y direc-
tion among each propagation to the w = 1 space depends
on k. This is because, when the k particles are propa-
gated to the w = 1 space, they are distributed in a line.
There, one has to rearrange them in the rectangular form
explained in Figs. ??, ??. It follows from the construction
that this rearrangement requires to leave space

A(k) = 2!k/4"+ 2 ∼ k (26)

between interactions. An overall layout of the propaga-
tion of particles in the w = 0 space is shown in Fig. ??.

Finally, note that, as indicated in Fig. ??, one requires
a 4D lattice of size

(x, y, z, w) = (2n,
n

∑

k=0

A(k)

(

n

k

)

, 1, 1) ∼ 2n (27)

s1

s1

s2

s3

s4

s4

J1234

FIG. 13: A 4–body interaction in the superclique. The four
particles s1, s2, s3 and s4 are propagated into the space with
w = 1, shown here. Here they interact in a 4–body Ising–
type interaction as the one presented in Fig. ?? with coupling
strength Jijkl. Black arrows indicate propagation of the spin
(as in Figs. ??, ??; the corresponding merged faces are not
depicted to avoid overloading).

s1 s1

s2 s2

s3 s3

s4

s5

J1234

J1235

A(4)

FIG. 14: View of part of the w = 1 space. First, parti-
cles s1, s2, s3, s4 are propagated into this space, and they are
brought close to each other (propagations indicated in black
arrows) in order to interact in a 4–body interaction with in-
teraction strength J1234. After A(4) idle particles in the y
direction, particles s1, s2, s3, s5 are propagated into this space
and, again, they are brought close to each other to interact
in the 4–body interaction with strength J1235 .

to generate a superclique of n particles. There is an ex-
ponential overhead in the system size since one has to
generate an exponential number of interactions. We re-
mark that efficient constructions can be found for specific
target models, e.g. in Sec. ?? we show that the construc-
tion of the 2D Ising model only requires a linear overhead.
We also point out that the construction of the 4–clique
(i.e. the part of the superclique with 4–body interactions)
is the essential ingredient of the mean–field theory that
we will construct in Sec. ??.
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`
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´
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n
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A(n)
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n
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´

1

1

FIG. 15: 3D space with w = 0. Logical particles are dis-
tributed along the x direction and they are propagated along
the y direction.

E. Main result

Now we can finally gather the results we have proven
in the last sections in order to state our main result. In
Sec. ?? we have shown that by setting some coupling
strengths to infinity or zero (merge or deletion rule), the
partition function of a 4D Z2 LGT can become the parti-
tion function of a superclique. Then, in Sec. ??, we have
shown that if one tunes the coupling strengths of a su-
perclique appropriately, its Hamilton function specializes
to a totally general Hamilton function between n 2–level
particles, and thus the corresponding partition functions
are also equal. Therefore, we have shown that the parti-
tion function of an enlarged 4D Z2 LGT with appropriate
inhomogeneous coupling strengths can specialize to the
partition function of any Hamilton function of n 2–level
particles. More specifically, we have seen that, for any
classical spin system, there is a subsystem of the com-
plete model (the superclique) that behaves like it (when
the appropriate coupling strengths are set on it).

Let us elaborate on the class of models that are em-
braced by this result. First of all, the completeness result
holds for models with an arbitrary interaction pattern be-
tween these n 2–level particles, which includes

• Models in regular lattices in arbitrary dimension;
e.g. an 8D Z2 LGT can be mapped to an enlarged
4D Z2 LGT with appropriate inhomogeneous cou-
plings;

• Models on arbitrary graphs; e.g. a Z2 LGT defined
on a complicated, irregular graph (note that usually
Abelian discrete LGTs are only defined on hyper-
cubic lattices and here a much more general class
is considered);

• Models with different number of particles partici-
pating in the many–body interactions; e.g. models
with 6–body interactions can be mapped to the 4D
Z2 LGT, which has 4–body interactions.

• Models with different types of many–body interac-
tions; e.g. models containing more general 4–body
interactions (the most general case being to assign

a different energy to each of the 16 configurations of
the 4 particles) can be mapped to the 4D Z2 LGT,
which only contains Ising–type interactions.

In the second place, notice that the information of
whether the model possesses a global or a local symme-
try is also encoded in the Hamilton function. Since all
Hamilton functions are included in our result, this means
that the completeness result is valid for

• Models with local symmetries, i.e. other Abelian
discrete LGTs;

• Models with global symmetries, i.e. Abelian dis-
crete SSMs; e.g. the Ising model or the Potts model
can be mapped to a model with local symmetries,
the 4D Z2 LGT.

We will discuss how models with different types of sym-
metries can be mapped to each other in Sec. ??.

Furthermore, the completeness result also includes
general Hamilton functions between q−level particles,
since one just needs to encode each q–level particle in
mq = "log q# 2–level particles. Then, a totally general in-
teraction between n′ q−level particles is generated with a
superclique of n 2–level particles, with n = n′mq. Thus,
our result also holds for

• Models whose particles have an arbitrary number of
levels; e.g. Zq LGTs, which have q–level particles,
can be mapped to the 4D Z2 LGT, which has 2–
level particles.

In conclusion, we have shown that the 4D Z2 LGT
is complete for all Abelian discrete classical spin models,
including all Abelian discrete LGTs and Abelian discrete
SSMs. In symbols, the main result of this work can be
summarized as

ZAbelian discrete classical(J) = Z4D Z2 LGT(J, J ′) (28)

where J is the set of couplings in the target model, and
J ′ is the set of couplings in the additional particles of the
complete model.

F. Efficiency results

We have emphasized that all completeness results re-
quire a larger, inhomogeneous complete model when com-
pared to the target model. Here we investigate how the
number of particles in the complete model n′ scales with
the number of particles of the target model n. That is, we
study how the system size of the complete model increase
when the system size of the target model increases.

First, we focus on the number of particles participat-
ing in interactions in the target Hamilton function. If
the target Hamilton function contains at most k−body
interactions (and q = 2), in general one needs to generate
a superclique of k particles in the 4D Z2 LGT for each of
these interactions (because the method of Sec. ?? could

Superclique: 
complicated interaction pattern 

with simple interactions

Layout of the superclique:
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s1,1

s1,2

s1,3

s1,4

J1,1;1,2

J1,2;1,3

J1,3;1,4

FIG. 18: Generation of a 1D array of Ising–type interactions:
si,j interacts with spin si,j+1 via a 2–body Ising–type interac-
tion with coupling strength Ji,j;i,j+1. Arrows indicate propa-
gation of the spin according to Fig. ??, and the cubes marked
in blue indicate a 2–body interaction according to Fig. ??(b).

to construct the 1D array of Fig. ??, we make use of
the fourth dimension in order to link them as shown in
Fig. ??. The yellow cubes have the same meaning as
the blue cubes in Fig. ??, that is, they correspond to 2–
body Ising–type interactions. In this manner, spin s1,1

interacts with s2,1 with strength J1,1;2,1, and so on. This
completes the construction of the 2D Ising model.

s1,1

s1,2

s1,3

s1,4

s2,1

s2,2

s2,3

s2,4

s3,1

s3,2

s3,3

s3,4

x
y

zw

J2,4;3,4

J1,4;2,4

J2,1;3,1

J1,1;2,1

FIG. 19: Construction of the 2D Ising model. Each 1D array
interacts with the next one via the fourth dimension, that is,
si,j interacts with si+1,j via a yellow face, with interaction
strength Ji,j;i+1,j . Every layer for different w corresponds to
the 1D array of interactions of Fig. ?? (blue cubes are not
shown to avoid overloading). As in Fig. ??, yellow cubes
have the same meaning as blue cubes, i.e. 2–body Ising–type
interactions.

As can be observed in Fig. ??, the construction of a
2D Ising model of size n×m requires a 4D lattice of size
(x, y, z, w) = (2n, 4, 1, m), i.e. the scaling is linear in the
system size.

VI. IMPLICATIONS OF THE MAIN RESULT

In this section we will draw two implications of the
main result. First, in Sec. ?? we will conclude that com-
puting the partition function of 4D Z2 LGT is #P hard;
that is, computationally difficult. Then, in Sec. ?? we
will argue that our result provides a new method to com-
pute the mean–field–theory of a Z2 LGT, which works for
finite dimension.

A. Computational complexity of 3D and 4D Z2

LGT

Our main result implies, in particular, that the parti-
tion function of the 2D Ising model with magnetic fields
can be expressed as a specific instance of the partition
function of the 4D Z2 LGT. The computation of the par-
tition function of the 2D Ising model with magnetic fields
is a #P–complete problem [? ] –roughly speaking, this
means that it is computationally difficult [? ]. Thus, we
conclude that computing the partition function of the 4D
Z2 LGT in the real parameter regime is #P–hard, i.e. at
least as hard as the other problem. That is, we have
proven that one can map all models to a model which is
hard to solve.

The construction presented above also gives insight
into the complexity of the 3D Z2 LGT. More precisely,
in Sec. ?? we saw that a 3D Z2 LGT can prepare mod-
els with k–body Ising–type interactions, for any k =
1, . . . , n, as long as as every particle participates in at
most two interactions (this was the limitation of the two
ends of Fig. ?? that made us move to the 4D lattice).
This implies, in particular, that the 3D Z2 LGT must
be as hard as any vertex model with q = 2 and k−body
Ising–type interactions.

On the other hand, using a method introduced in [?
], one can show that approximating the partition func-
tion of the 3D Z2 LGT in a certain complex parameter
regime with polynomial accuracy is as hard as simulating
arbitrary quantum computations, i.e. BQP–complete [?
].

B. Mean–Field Theory

The mean–field theory of a model is an approximation
to that model where the interaction of a variable with its
neighbors is replaced by an interaction of this variable
with a mean field. In this manner, the theory is reduced
to a 1–body problem, which is useful to gain insight into
a theory that is difficult to solve exactly. Thus, there
are as many ways to construct a mean–field theory of a
model as ways to average over the influence of neighbor-
ing variables over a given variable.

In SSMs, mean–field theories of SSMs are generally
easy to construct. For example, in the Ising model, the
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FIG. 1: (Left) In a vertex model, particles (black dots) sit
at the edges and interactions (pale red dots) take place in the
vertices. (Right) This model is mapped to a quantum circuit,
where each interaction becomes a two–qubit gate.

This concludes the mapping between matrix elements of
quantum circuits and partition functions of classical spin
models.

In the following we make some remarks regarding this
mapping.

(i) Note that the quantum gates are specified by the
parameters of the classical model, namely by the
Boltzmann weights of local interactions. It follows
that only in certain parameter regimes, the resulting
circuit C is a sequence of unitary quantum gates.

(ii) We stress that this mapping can be easily extended
to open boundary conditions, i.e. systems where left
and right spins are ‘free’ and thus fully summed
out in the partition function. This can be eas-
ily achieved by replacing the left and right states
|L〉 and |R〉 by the state |+〉⊗n, where |+〉 =
q−1/2

∑q
i=0 |i〉 is a superposition over all q single

spin states. This yields the identity

ZOBC
vm = qn〈+|⊗nC|+〉⊗n . (12)

Further, periodic boundary conditions can also be
taken into account by summing over the diagonal
matrix elements, which results in

ZPBC
vm = Tr(C) . (13)

(iii) Similarly, one can consider other geometries such as,
e.g., vertex models on a 2D tilted triangular lattice
[9], where 6–body interactions take place at vertices
and the Boltzmann weights can be arranged into
q3×q3 matrices, corresponding to a quantum circuit
with 3-body quantum gates. One such model is the
32 vertex model [9]. Also 3D models, such as mod-
els on a tilted 3D square lattice, can be considered
of this type and can thus be mapped to quantum
circuits. In this case, one deals with 3-particle gates
acting on a 2D array of quantum particles. Gemma
ask Maarten why not 4-particle gates?

B. Edge models

Gemma put here on in the background what the potts
model is: The Potts model defined on a graph G is model
such that q–level particle sit at the vertices of a graph,
sa = 0, 1, . . . , q−1, and interact along the edges according
to

he(s) = −Jeδ(sa − sb) , (14)

where the edge e is adjacent to vertices a, b, and δ(sa −
sb) = 1 if si − sj = 0 and it is zero otherwise [10]. The
Hamiltonian is a sum of these 2–local terms over all edges

H(s) =
∑

e∈E

he(s) . (15)

In the following we will present a similar mapping for
edge models. In contrast to vertex models, in edge mod-
els the classical spins sit at the vertices of the graph; we
will also consider classical spins with q possible states
si ∈ {0, . . . , q − 1}. In this case interactions take place
along the edges. Consider, thus, a q-state edge model on
an n × m square lattice with an edge–dependent energy
function he(si, sj)—see Fig. 2. Let

we(si, sj) := e−βhe(si,sj) (16)

denote the corresponding Boltzmann weight. Then the
partition function is given by Z =

∑

s

∏

e=ij we(si, sj).
As previously, the n spins in the leftmost and rightmost
column of the lattice are fixed in the configurations sL :=
(sL

1 , . . . , sL
n) and sR := (sR

1 , . . . , sR
n ), respectively. With

each horizontal edge e, we now associate a q × q matrix

Wh
e :=

∑

si,sj

we(si, sj)|sj〉〈si| . (17)

Furthermore, with each vertical edge e, we associate the
q2 × q2 diagonal matrix

W v
e :=

∑

si,sj

we(si, sj)|si, sj〉〈si, sj | . (18)

The matrices Wh
e and W v

e will be regarded as (possi-
bly non-unitary) quantum gates acting on a single, re-
spectively a pair, of q-level quantum systems. We now
consider a one-dimensional quantum system composed
of n q-level systems and the quantum circuit C acting
on this system as depicted in Fig. 2. The circuit C con-
sists of alternating layers of operations associated with
the horizontal and vertical edges of the 2D lattice. Each
round of C associated with a layer of horizontal edges
consists of a product of one-local operators Wh

e , whereas
every round associated with a layer of vertical edges is
a product of two-local operations W v

e . We define com-
putational basis states |L〉 and |R〉 associated to the left
and right boundary conditions, respectively, analogously
to Eq. (10). With these definitions, one has the following
correspondence:

ZL,R
em = 〈L|C|R〉 . (19)
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FIG. 2: (Left) In an edge model, particles (black dots) sit
at the vertices and interactions (pale red and blue ellipses)
take place along the edges. (Right) This model is mapped to
a quantum circuit, where interactions along the time direc-
tion become single–qubit gates, and those perpendicular to it
become two–qubit gates.

This equation is readily verified by employing the defini-
tions of the gates Wh

e and W v
e .

In the following we give some simple modifications of
the this mapping that will be useful below. First, con-
sider that at site i in the lattice a local magnetic field
is present. This is represented by an additional term
hi(si) in the energy function and corresponding Boltz-
mann weight

wi(si) = e−βhi(si) , (20)

with si = 0, . . . , q − 1. Then we introduce the diagonal
q × q matrix

Wi :=
∑

si

wi(si)|si〉〈si| . (21)

Now a mapping to a quantum circuit C can be established
in a similar fashion as above, with the distinction that
each layer associated with a slice of vertical edges now
consists of a product of the associated two–qubit gates
W v

e and the associated single–qubit gates Wi. Note that,
as all such gates are diagonal operations, there is no prob-
lem regarding operator ordering. With this choice of C,
it can readily be verified that the associated partition
function can be written as (19).

Second, this mapping can also be extended to open and
periodic boundary conditions, in a completely analogous
fashion as for vertex models (see Sec. IVA).

Finally, we remark that the above mappings from par-
tition functions to quantum circuits may easily be gen-
eralized to graphs other than the 2D lattice, similarly as
for vertex models. In particular, below we will consider
the following class of subgraphs of the 2D square lattice:
a graph G is said to be a planar circuit graph if it can be
obtained from an n×m rectangular grid (for some n and
m) by deleting a subset of vertical edges and contracting
a subset of horizontal edges. If G is such a subgraph of
an n × m rectangular grid, we call n the vertical dimen-
sion of G; note that this quantity is uniquely defined for
every planar circuit graph. Similar as for the 2D square
lattice, one can associate a quantum circuit C with every
planar circuit graph; more precisely, one associates each

horizontal and vertical edge e with the gates Wh
e and

W v
e , respectively, and each vertex i with the gate Wi; see

Fig. 3 for an example. If the vertical dimension of the
graph is n then C acts on n q-level systems. An identity
similar to (19), or to (12) in the case of open boundary
conditions, is easily seen to hold for planar circuit graphs
as well (both with or without an external field).
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FIG. 3: (Left) Edge model defined on a planar circuit graph.
The latter is obtained from an rectangular grid by deleting
some vertical edges and contracting some horizontal edges.
(Right) Mapping of a classical spin model defined on a planar
circuit graph onto a quantum circuit. Horizontal and vertical
edge interactions are mapped to single–qubit non–diagonal
and two–qubit diagonal gates, respectively, and local inter-
actions (e.g. magnetic fields) are mapped onto single–qubit
(diagonal) gates.

We now specialize the above discussion to the case of
the 2D Ising model. We will consider the Ising model
on (sublattices of) the 2D lattice in the presence of an
external field: The interaction between two spins si and
sj located at the endpoints of an edge e = ij is given
by he(si, sj) = −Jeδ(si + sj), and the contribution of
the magnetic field at site i is hi(si) = −hisi. Here the
spin states si may take values 0 and 1, the sum is per-
formed modulo 2, and δ(·) is 1 if the argument is 0 and
it is 0 otherwise. Further, Je and hi are constants which
represent the strengths of the pairwise interaction and
magnetic field, respectively. With the definitions (17),
(18) and (21), we have

Wh
e =

[

eβJe 1
1 eβJe

]

, W v
e = diag(eβJe, 1, 1, eβJe)

Wi =

[

eβhi 0
0 1

]

.
(22)

C. Lattice gauge theories

We proceed to present a similar mapping for an entirely
different class of models, namely Z2 LGTs. We refer the
reader to [3] for an introduction to these models. For the
present purposes we will be interested in the following
features of Z2 LGTs. They are models whose classical
spins can take two values se ∈ {0, 1} and sit at the edges
of a square lattice. There is an interaction along every
face; in particular, for spins si, sj, sk, sl at the boundary
of face f , the interaction takes the form

hf (s) = −Jfδ(si + sj + sk + sl) , (23)
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four–qubit gates.

A. Six–vertex model

We will now use the mappings between vertex models
and quantum circuits described in Sec. IVA to show that
approximating the partition function Z of some vertex
models is in certain (complex) parameter regimes BQP–
complete [1].

We consider the q = 2 ‘six-vertex model’ (or: ‘ice–type
model’) and the ‘eight-vertex model’ [8] on a (tilted) 2D
square lattice. In the six-vertex model, only six of the
16 possible spin configurations give rise to a non-zero
Boltzmann weight. More precisely, W a is a 4× 4 matrix
of the form

W a =







w00,00 0 0 0
0 w01,01 w01,10 0
0 w10,01 w10,10 0
0 0 0 w11,11






. (37)

The eight-vertex model [8] is obtained by additionally al-
lowing the entries w00,11, w11,00 to be non–zero. We con-
sider a parameter regime of the classical model where all
matrices W a are unitary, that is, the circuit C is a unitary
circuit of two–qubit quantum gates. Notice that this gen-
erally corresponds to (non–physical) complex parameters
for either coupling strengths or the inverse temperature
β. Finally, we assume that we have staggered left an right
boundary conditions of the form L = R = (0101 . . . ).

In this case, we show that approximating the partition
function of six–vertex models on a n × poly(n) lattice is
BQP–complete. Let us fix some notation before starting
the proof. Henceforth we will denote encoded states and
operators by boldface symbols, and we will also omit the
tensor product symbol ⊗ to keep notation simple. Now
we can proceed to prove the claim of this section. To do
so, we will show that any quantum computation can be
reduced to the evaluation of the partition function of a
six–vertex model on a tilted 2D square lattice with stag-
gered boundary conditions. We will prove this statement
in three steps:

(i) We show that quantum gates of the form (37) are
computational universal for encoded quantum com-
putation;

(ii) The encoded initial state |0〉⊗N can be prepared
from the state corresponding to staggered boundary
conditions |0101 . . .〉;

(iii) For any given poly–size quantum circuit C, one can
efficiently approximate the matrix element 〈0|C|0〉
by using encoded quantum states and gates of the
form (37).

To show (i), we consider the exchange (or Heisenberg)
interaction,

Hex = σx ⊗ σx + σy ⊗ σy + σz ⊗ σz (38)

with correspondingtwo–qubitt gates

U = eitHex . (39)

These are of the form (37) with the non–zero entries

w00,00 = w11,11 = ei2t

w01,01 = w10,10 = cos(2t)
w01,10 = w10,01 = i sin(2t) .

(40)

The Heisenberg interaction is (encoded) universal for
quantum computation [12, 13]. In other words, by us-
ing gates of the form (39), one can prepare any quantum
state |ψ〉 = C|0〉 in an encoded form. Here, we use a
four-qubit encoding |0〉 with

|0〉 =
1

2
(|01〉 − |10〉)⊗2 . (41)

And the |1〉 ?
We now turn to (ii) and consider an operation V of the

form (37) with the non–zero entries

w00,00 = w11,11 = 1
w01,01 = w10,10 = w01,10 = −w10,01 = 1/

√
2 .

(42)

It is straightforward to check that V |01〉 = (|01〉 −
|10〉)/

√
2, and hence

|0〉 = V ⊗2|0101〉 . (43)

Regarding (iii), we observe that matrix elements of
the form 〈0|C|0〉 can be efficiently approximated by a
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is a bit more involved and we refer the reader to
Appendix B for the details.

• The two–qubit identity gate

I2 =
1

∑

i,j=0

|ij〉〈ij| , (56)

is trivially obtained by applying a two qutrit–gate
between the two physical qutrits of the first logical
qubit with (µ, ν) = (1, 1), and doing the same for
the other logical qubit (see Fig. 6a).

• Finally, the phase gate between logical qubits

CZ =
1

∑

i,j=0

(−1)ij |ij〉〈ij| (57)

is achieved by applying a two qutrit–gate be-
tween the lower–qutrit of the first logical qubit and
the upper qutrit of the second logical qudit with
(µ, ν) = (−1, 1). We also need to apply the same
gate between the lower qudit of the second logical
qubit and an auxiliary particle in the state |2〉 (see
Fig. 6b).

|2〉
(1, 1)

(eiπ/8, 1)

|ψ〉I1|ψ〉
|ψ〉P |ψ〉

(a) (b)

time time

FIG. 5: (a) Logical single–qubit identity I1. (b) Logical
phase gate P . Each gate is determined by the pair of numbers
(µ, ν) (Eq. (52)) which are indicated next to it, and its color
is just a guide to the eye to identify equal gates. Auxiliary
spins (i.e. fixed spins) are colored in gray, and physical spins
in black. Note that in both figures time runs from right to
left.

Gemma unify the two figures in one?
In summary, we have proven that by letting the qutrits

interact according to a Potts-type nearest-neighbor inter-
action, we can perform universal quantum computation
at the logical level. From Eq. (3) it follows that the com-
putation of the partition function of the Potts model with
3-level systems is a BQP–complete problem.

We now give a few remarks regarding this construc-
tion. First, we observe that the single–qubit identity I1

requires to set ν = 0, i.e. Ji!=j = −∞. This caveat can
be circumvented by applying a modified gate, I′

1 with
(µ, ν) = (1, 1) and is thus within the usual parameter
range of the Potts model. It can be readily verified that

|2〉

(1, 1)

(1, 1)

(−1, 1)

(−1, 1)

|ψ1〉

|ψ2〉

|ψ1〉

|ψ2〉

I2|ψ1〉|ψ2〉 CZ|ψ1〉|ψ2〉

(a) (b)

time time

FIG. 6: (a) Logical two–qubit identity I2. (b) Logical con-
trolled phase gate CZ. See the caption of Fig. 5 for the
meaning of the pair of numbers and the color associated to
each gate.

the use of I ′ instead of I results in a prefactor in the ob-
tained partition function, namely Z ′ = 3IZ, where I is
the number of times I ′ has been applied. Thus, the com-
plexity of computing Z is the same as that of computing
Z.

even though I may scale with the system size?
Second, note that the implementation of the gates H ,

P and CZ require complex values of the energy Jii, more
precisely:

βJii = −iπ/2, 0,−∞,± ln ε, π/2 for H

βJii = iπ/8 for P (58)

βJii = iπ for CZ ,

which is outside the usual (real) parameter range where
these spin models are defined.

We remark that the scheme presented above enables
one to perform x-rotations Rx(θ) with an arbitrary angle
θ. This is achieved by setting the first single-qutrit gate
acting on the upper qutrit to (µ, ν) = (−i cot θ, 1), and
the two last single-qutrit gates to (µ, ν) = (i sin θ, 1). The
same is true for z-rotations: they can be performed over
an arbitrary angle ξ by letting the two–qutrit gate that
acts on the lower qutrit have (µ, ν) = (eiξ, 1). In this
case the parameter regime corresponds additionally to

βJii = ln(−i cot θ), ln(i sin θ) for Rx(θ)
βJii = iξ for Rz(ξ) .

(59)

This gives a larger class of Potts models whose partition
function is BQP–complete.

Gemma Place this remark about the constraints. We
would like to point out that our BQP–completeness re-
sults for the Potts model has (i) constraints in the pa-
rameter regime (basically the regime are all imaginary
numbers, zero and infinite – so everything but the usu-
ally considered regime), and (ii) geometric constraints
due to the encoding (couplings have to be distributed in
a specific way to make the computation of its partition
function have this complexity; e.g. obviously if they were
everywhere zero, or everywhere but in a trivial region, the
complexity of the partition function would not be BQP.
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is trivially obtained by applying a two qutrit–gate
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qubit with (µ, ν) = (1, 1), and doing the same for
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the upper qutrit of the second logical qudit with
(µ, ν) = (−1, 1). We also need to apply the same
gate between the lower qudit of the second logical
qubit and an auxiliary particle in the state |2〉 (see
Fig. 6b).

|2〉
(1, 1)

(eiπ/8, 1)

|ψ〉I1|ψ〉
|ψ〉P |ψ〉

(a) (b)

time time

FIG. 5: (a) Logical single–qubit identity I1. (b) Logical
phase gate P . Each gate is determined by the pair of numbers
(µ, ν) (Eq. (52)) which are indicated next to it, and its color
is just a guide to the eye to identify equal gates. Auxiliary
spins (i.e. fixed spins) are colored in gray, and physical spins
in black. Note that in both figures time runs from right to
left.

Gemma unify the two figures in one?
In summary, we have proven that by letting the qutrits

interact according to a Potts-type nearest-neighbor inter-
action, we can perform universal quantum computation
at the logical level. From Eq. (3) it follows that the com-
putation of the partition function of the Potts model with
3-level systems is a BQP–complete problem.

We now give a few remarks regarding this construc-
tion. First, we observe that the single–qubit identity I1

requires to set ν = 0, i.e. Ji!=j = −∞. This caveat can
be circumvented by applying a modified gate, I′

1 with
(µ, ν) = (1, 1) and is thus within the usual parameter
range of the Potts model. It can be readily verified that

|2〉

(1, 1)

(1, 1)

(−1, 1)

(−1, 1)

|ψ1〉

|ψ2〉

|ψ1〉

|ψ2〉

I2|ψ1〉|ψ2〉 CZ|ψ1〉|ψ2〉

(a) (b)

time time

FIG. 6: (a) Logical two–qubit identity I2. (b) Logical con-
trolled phase gate CZ. See the caption of Fig. 5 for the
meaning of the pair of numbers and the color associated to
each gate.

the use of I ′ instead of I results in a prefactor in the ob-
tained partition function, namely Z ′ = 3IZ, where I is
the number of times I ′ has been applied. Thus, the com-
plexity of computing Z is the same as that of computing
Z.

even though I may scale with the system size?
Second, note that the implementation of the gates H ,

P and CZ require complex values of the energy Jii, more
precisely:

βJii = −iπ/2, 0,−∞,± ln ε, π/2 for H

βJii = iπ/8 for P (58)

βJii = iπ for CZ ,

which is outside the usual (real) parameter range where
these spin models are defined.

We remark that the scheme presented above enables
one to perform x-rotations Rx(θ) with an arbitrary angle
θ. This is achieved by setting the first single-qutrit gate
acting on the upper qutrit to (µ, ν) = (−i cot θ, 1), and
the two last single-qutrit gates to (µ, ν) = (i sin θ, 1). The
same is true for z-rotations: they can be performed over
an arbitrary angle ξ by letting the two–qutrit gate that
acts on the lower qutrit have (µ, ν) = (eiξ, 1). In this
case the parameter regime corresponds additionally to

βJii = ln(−i cot θ), ln(i sin θ) for Rx(θ)
βJii = iξ for Rz(ξ) .

(59)

This gives a larger class of Potts models whose partition
function is BQP–complete.

Gemma Place this remark about the constraints. We
would like to point out that our BQP–completeness re-
sults for the Potts model has (i) constraints in the pa-
rameter regime (basically the regime are all imaginary
numbers, zero and infinite – so everything but the usu-
ally considered regime), and (ii) geometric constraints
due to the encoding (couplings have to be distributed in
a specific way to make the computation of its partition
function have this complexity; e.g. obviously if they were
everywhere zero, or everywhere but in a trivial region, the
complexity of the partition function would not be BQP.

11

is a bit more involved and we refer the reader to
Appendix B for the details.

• The two–qubit identity gate

I2 =
1

∑

i,j=0

|ij〉〈ij| , (56)

is trivially obtained by applying a two qutrit–gate
between the two physical qutrits of the first logical
qubit with (µ, ν) = (1, 1), and doing the same for
the other logical qubit (see Fig. 6a).

• Finally, the phase gate between logical qubits

CZ =
1

∑

i,j=0

(−1)ij |ij〉〈ij| (57)

is achieved by applying a two qutrit–gate be-
tween the lower–qutrit of the first logical qubit and
the upper qutrit of the second logical qudit with
(µ, ν) = (−1, 1). We also need to apply the same
gate between the lower qudit of the second logical
qubit and an auxiliary particle in the state |2〉 (see
Fig. 6b).

|2〉
(1, 1)

(eiπ/8, 1)

|ψ〉I1|ψ〉
|ψ〉P |ψ〉

(a) (b)

time time

FIG. 5: (a) Logical single–qubit identity I1. (b) Logical
phase gate P . Each gate is determined by the pair of numbers
(µ, ν) (Eq. (52)) which are indicated next to it, and its color
is just a guide to the eye to identify equal gates. Auxiliary
spins (i.e. fixed spins) are colored in gray, and physical spins
in black. Note that in both figures time runs from right to
left.

Gemma unify the two figures in one?
In summary, we have proven that by letting the qutrits

interact according to a Potts-type nearest-neighbor inter-
action, we can perform universal quantum computation
at the logical level. From Eq. (3) it follows that the com-
putation of the partition function of the Potts model with
3-level systems is a BQP–complete problem.

We now give a few remarks regarding this construc-
tion. First, we observe that the single–qubit identity I1

requires to set ν = 0, i.e. Ji!=j = −∞. This caveat can
be circumvented by applying a modified gate, I′

1 with
(µ, ν) = (1, 1) and is thus within the usual parameter
range of the Potts model. It can be readily verified that

|2〉

(1, 1)

(1, 1)

(−1, 1)

(−1, 1)

|ψ1〉

|ψ2〉

|ψ1〉

|ψ2〉

I2|ψ1〉|ψ2〉 CZ|ψ1〉|ψ2〉

(a) (b)

time time

FIG. 6: (a) Logical two–qubit identity I2. (b) Logical con-
trolled phase gate CZ. See the caption of Fig. 5 for the
meaning of the pair of numbers and the color associated to
each gate.

the use of I ′ instead of I results in a prefactor in the ob-
tained partition function, namely Z ′ = 3IZ, where I is
the number of times I ′ has been applied. Thus, the com-
plexity of computing Z is the same as that of computing
Z.

even though I may scale with the system size?
Second, note that the implementation of the gates H ,

P and CZ require complex values of the energy Jii, more
precisely:

βJii = −iπ/2, 0,−∞,± ln ε, π/2 for H

βJii = iπ/8 for P (58)

βJii = iπ for CZ ,

which is outside the usual (real) parameter range where
these spin models are defined.

We remark that the scheme presented above enables
one to perform x-rotations Rx(θ) with an arbitrary angle
θ. This is achieved by setting the first single-qutrit gate
acting on the upper qutrit to (µ, ν) = (−i cot θ, 1), and
the two last single-qutrit gates to (µ, ν) = (i sin θ, 1). The
same is true for z-rotations: they can be performed over
an arbitrary angle ξ by letting the two–qutrit gate that
acts on the lower qutrit have (µ, ν) = (eiξ, 1). In this
case the parameter regime corresponds additionally to

βJii = ln(−i cot θ), ln(i sin θ) for Rx(θ)
βJii = iξ for Rz(ξ) .

(59)

This gives a larger class of Potts models whose partition
function is BQP–complete.

Gemma Place this remark about the constraints. We
would like to point out that our BQP–completeness re-
sults for the Potts model has (i) constraints in the pa-
rameter regime (basically the regime are all imaginary
numbers, zero and infinite – so everything but the usu-
ally considered regime), and (ii) geometric constraints
due to the encoding (couplings have to be distributed in
a specific way to make the computation of its partition
function have this complexity; e.g. obviously if they were
everywhere zero, or everywhere but in a trivial region, the
complexity of the partition function would not be BQP.

11

is a bit more involved and we refer the reader to
Appendix B for the details.

• The two–qubit identity gate

I2 =
1

∑

i,j=0

|ij〉〈ij| , (56)

is trivially obtained by applying a two qutrit–gate
between the two physical qutrits of the first logical
qubit with (µ, ν) = (1, 1), and doing the same for
the other logical qubit (see Fig. 6a).

• Finally, the phase gate between logical qubits

CZ =
1

∑

i,j=0

(−1)ij |ij〉〈ij| (57)

is achieved by applying a two qutrit–gate be-
tween the lower–qutrit of the first logical qubit and
the upper qutrit of the second logical qudit with
(µ, ν) = (−1, 1). We also need to apply the same
gate between the lower qudit of the second logical
qubit and an auxiliary particle in the state |2〉 (see
Fig. 6b).

|2〉
(1, 1)

(eiπ/8, 1)

|ψ〉I1|ψ〉
|ψ〉P |ψ〉

(a) (b)

time time

FIG. 5: (a) Logical single–qubit identity I1. (b) Logical
phase gate P . Each gate is determined by the pair of numbers
(µ, ν) (Eq. (52)) which are indicated next to it, and its color
is just a guide to the eye to identify equal gates. Auxiliary
spins (i.e. fixed spins) are colored in gray, and physical spins
in black. Note that in both figures time runs from right to
left.

Gemma unify the two figures in one?
In summary, we have proven that by letting the qutrits

interact according to a Potts-type nearest-neighbor inter-
action, we can perform universal quantum computation
at the logical level. From Eq. (3) it follows that the com-
putation of the partition function of the Potts model with
3-level systems is a BQP–complete problem.

We now give a few remarks regarding this construc-
tion. First, we observe that the single–qubit identity I1

requires to set ν = 0, i.e. Ji!=j = −∞. This caveat can
be circumvented by applying a modified gate, I′

1 with
(µ, ν) = (1, 1) and is thus within the usual parameter
range of the Potts model. It can be readily verified that

|2〉

(1, 1)

(1, 1)

(−1, 1)

(−1, 1)

|ψ1〉

|ψ2〉

|ψ1〉

|ψ2〉

I2|ψ1〉|ψ2〉 CZ|ψ1〉|ψ2〉

(a) (b)

time time

FIG. 6: (a) Logical two–qubit identity I2. (b) Logical con-
trolled phase gate CZ. See the caption of Fig. 5 for the
meaning of the pair of numbers and the color associated to
each gate.

the use of I ′ instead of I results in a prefactor in the ob-
tained partition function, namely Z ′ = 3IZ, where I is
the number of times I ′ has been applied. Thus, the com-
plexity of computing Z is the same as that of computing
Z.

even though I may scale with the system size?
Second, note that the implementation of the gates H ,

P and CZ require complex values of the energy Jii, more
precisely:

βJii = −iπ/2, 0,−∞,± ln ε, π/2 for H

βJii = iπ/8 for P (58)

βJii = iπ for CZ ,

which is outside the usual (real) parameter range where
these spin models are defined.

We remark that the scheme presented above enables
one to perform x-rotations Rx(θ) with an arbitrary angle
θ. This is achieved by setting the first single-qutrit gate
acting on the upper qutrit to (µ, ν) = (−i cot θ, 1), and
the two last single-qutrit gates to (µ, ν) = (i sin θ, 1). The
same is true for z-rotations: they can be performed over
an arbitrary angle ξ by letting the two–qutrit gate that
acts on the lower qutrit have (µ, ν) = (eiξ, 1). In this
case the parameter regime corresponds additionally to

βJii = ln(−i cot θ), ln(i sin θ) for Rx(θ)
βJii = iξ for Rz(ξ) .

(59)

This gives a larger class of Potts models whose partition
function is BQP–complete.

Gemma Place this remark about the constraints. We
would like to point out that our BQP–completeness re-
sults for the Potts model has (i) constraints in the pa-
rameter regime (basically the regime are all imaginary
numbers, zero and infinite – so everything but the usu-
ally considered regime), and (ii) geometric constraints
due to the encoding (couplings have to be distributed in
a specific way to make the computation of its partition
function have this complexity; e.g. obviously if they were
everywhere zero, or everywhere but in a trivial region, the
complexity of the partition function would not be BQP.

11

is a bit more involved and we refer the reader to
Appendix B for the details.

• The two–qubit identity gate

I2 =
1

∑

i,j=0

|ij〉〈ij| , (56)

is trivially obtained by applying a two qutrit–gate
between the two physical qutrits of the first logical
qubit with (µ, ν) = (1, 1), and doing the same for
the other logical qubit (see Fig. 6a).

• Finally, the phase gate between logical qubits

CZ =
1

∑

i,j=0

(−1)ij |ij〉〈ij| (57)

is achieved by applying a two qutrit–gate be-
tween the lower–qutrit of the first logical qubit and
the upper qutrit of the second logical qudit with
(µ, ν) = (−1, 1). We also need to apply the same
gate between the lower qudit of the second logical
qubit and an auxiliary particle in the state |2〉 (see
Fig. 6b).

|2〉
(1, 1)

(eiπ/8, 1)

|ψ〉I1|ψ〉
|ψ〉P |ψ〉

(a) (b)

time time

FIG. 5: (a) Logical single–qubit identity I1. (b) Logical
phase gate P . Each gate is determined by the pair of numbers
(µ, ν) (Eq. (52)) which are indicated next to it, and its color
is just a guide to the eye to identify equal gates. Auxiliary
spins (i.e. fixed spins) are colored in gray, and physical spins
in black. Note that in both figures time runs from right to
left.

Gemma unify the two figures in one?
In summary, we have proven that by letting the qutrits

interact according to a Potts-type nearest-neighbor inter-
action, we can perform universal quantum computation
at the logical level. From Eq. (3) it follows that the com-
putation of the partition function of the Potts model with
3-level systems is a BQP–complete problem.

We now give a few remarks regarding this construc-
tion. First, we observe that the single–qubit identity I1

requires to set ν = 0, i.e. Ji!=j = −∞. This caveat can
be circumvented by applying a modified gate, I′

1 with
(µ, ν) = (1, 1) and is thus within the usual parameter
range of the Potts model. It can be readily verified that

|2〉

(1, 1)

(1, 1)

(−1, 1)

(−1, 1)

|ψ1〉

|ψ2〉

|ψ1〉

|ψ2〉

I2|ψ1〉|ψ2〉 CZ|ψ1〉|ψ2〉

(a) (b)

time time

FIG. 6: (a) Logical two–qubit identity I2. (b) Logical con-
trolled phase gate CZ. See the caption of Fig. 5 for the
meaning of the pair of numbers and the color associated to
each gate.

the use of I ′ instead of I results in a prefactor in the ob-
tained partition function, namely Z ′ = 3IZ, where I is
the number of times I ′ has been applied. Thus, the com-
plexity of computing Z is the same as that of computing
Z.

even though I may scale with the system size?
Second, note that the implementation of the gates H ,

P and CZ require complex values of the energy Jii, more
precisely:

βJii = −iπ/2, 0,−∞,± ln ε, π/2 for H

βJii = iπ/8 for P (58)

βJii = iπ for CZ ,

which is outside the usual (real) parameter range where
these spin models are defined.

We remark that the scheme presented above enables
one to perform x-rotations Rx(θ) with an arbitrary angle
θ. This is achieved by setting the first single-qutrit gate
acting on the upper qutrit to (µ, ν) = (−i cot θ, 1), and
the two last single-qutrit gates to (µ, ν) = (i sin θ, 1). The
same is true for z-rotations: they can be performed over
an arbitrary angle ξ by letting the two–qutrit gate that
acts on the lower qutrit have (µ, ν) = (eiξ, 1). In this
case the parameter regime corresponds additionally to

βJii = ln(−i cot θ), ln(i sin θ) for Rx(θ)
βJii = iξ for Rz(ξ) .

(59)

This gives a larger class of Potts models whose partition
function is BQP–complete.

Gemma Place this remark about the constraints. We
would like to point out that our BQP–completeness re-
sults for the Potts model has (i) constraints in the pa-
rameter regime (basically the regime are all imaginary
numbers, zero and infinite – so everything but the usu-
ally considered regime), and (ii) geometric constraints
due to the encoding (couplings have to be distributed in
a specific way to make the computation of its partition
function have this complexity; e.g. obviously if they were
everywhere zero, or everywhere but in a trivial region, the
complexity of the partition function would not be BQP.
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Do you want to include this paragraph? From the
point of view of the complexity results, to have a discrete
parameter regime of the Potts model for which its com-
putation is BQP–complete is a stronger result than with
a continuous parameter regime. However, from the point
of view of a quantum algorithm, the larger the parame-
ter regime, the stronger the result, because it can include
more Potts model for which we propose a quantum al-
gorithm. Note, however, that both parameter regimes
are complex, and thus the quantum algorithms cannot
be used to compute Potts model with real, i.e. physical,
parameters. This problem was already encountered in
Ref. [4–6].

Third, in the constructions presented above we need
a constant supply of auxiliary qutrits. Therefore we en-
visage two possible setups. One possibility is to have
auxiliary qutrits in the middle of a 2D square lattice in
contact with the nodes, but this requires to set bound-
ary conditions also at the middle of the lattice. This
drawback is circumvented in the second setup, in which
physical qubits are in contact with four auxiliary qubits:
one in |0〉, one in |1〉, another one in |2〉 and the fourth
auxiliary in any of these values (it is four instead of three
because of symmetry reasons), thus forming a triangular
lattice (see Fig. 7a). Gates in the direction of time corre-
spond to a single qutrit gates, whereas gates perpendic-
ular to this direction correspond to two–qutrit gates (see
Fig. 7b). All single–qutrit gates for auxiliary particles
are single–qutrit identity gates. Note that the auxiliary
particles are left unchanged after any gate.

Fourth, we see with our construction that the Potts
model in a 1D array is not BQP–complete, whereas this
model on a 2D setup (and with complex parameters) is
BQP–complete. This is in agreement with the fact that
the Potts model in 1D array or a tree–like structure is
efficiently simulatable classically [14].

Finally, this result can be generalized to Potts model
with any q. In this case, the encoded states are still
given by Eq. (51), and all gates are performed with the
same procedure except for the Hadamard. For this gate,
one adds filters for the |3〉 . . . |q − 1〉 components on the
upper and the lower qudit right after the filters for the |2〉
and the |0〉 component of Fig. 11. That is, the number
of filters scales linearly with q (since one requires q − 2
filters for each qudit). Moreover, each physical qudit has
to be connected to 2#q/2$ auxiliary particles, each fixed
in a different state, namely |0〉, . . . , |q−1〉. This amounts
to a similar construction to that of Fig. 7 but where each
physical qudit is connected to #q/2$ auxiliary qudits to
the left and to the right. Gemma do we need some extra
figure on that? I wouldn’t add one, otherwise it’ll be too
long

D. Z2 Lattice gauge theory

Now we turn to a different class of models, namely
LGTs. Using the same tools (presented in Sec. IV C), we
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FIG. 7: Setup for a 2D Potts model with the physical (phys.)
qutrits surrounded by auxiliary (aux.) qutrits, i.e. by qutrits
whose value is fixed. Single–qutrit gates are applied in the
time direction, and two–qutrit gates are applied in a fixed time
slice. (a) A time slice of the lattice at time t, where one can see
the triangular structure with two auxiliary qutrits connected
to each physical qutrit. Each logical qutrit is composed of two
physical qutrits. (b) Two time slices of the lattice, at times t
and t + 1. The figure shows an example of a circuit, where a
phase gate P is applied to |ψt

1〉 and the gate CZ is applied
to |ψt+1

1 〉|ψt+1
2 〉.

will prove that computing the partition function of the
3D Z2 LGT (in a specific, complex parameter regime) is
BQP–complete. Gemma check this Here we will make use
of the gauge symmetry to fix the value of some spins, in-
stead of fixing them boundary conditions as in Sec. VB,
VC. In particular, we will fix the spins in the time di-
rection of edges that connect logical qubits (see below)
at different time slices, and some other spins (not in the
time direction), as will be specified below.

Our goal is to construct, at the logical level, the uni-
versal gate set

Rz(ξ) = |0〉〈0| + eiξ|1〉〈1|
H =

∑1
i,j=0,1(−1)ij |j〉〈i|

σz ⊗ σz =
∑1

i,j=0(−1)i⊕j |ij〉〈ij| .
(60)
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physical qubits are in contact with four auxiliary qubits:
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auxiliary in any of these values (it is four instead of three
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Finally, this result can be generalized to Potts model
with any q. In this case, the encoded states are still
given by Eq. (51), and all gates are performed with the
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one adds filters for the |3〉 . . . |q − 1〉 components on the
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physical qudit is connected to #q/2$ auxiliary qudits to
the left and to the right. Gemma do we need some extra
figure on that? I wouldn’t add one, otherwise it’ll be too
long

D. Z2 Lattice gauge theory

Now we turn to a different class of models, namely
LGTs. Using the same tools (presented in Sec. IV C), we
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FIG. 7: Setup for a 2D Potts model with the physical (phys.)
qutrits surrounded by auxiliary (aux.) qutrits, i.e. by qutrits
whose value is fixed. Single–qutrit gates are applied in the
time direction, and two–qutrit gates are applied in a fixed time
slice. (a) A time slice of the lattice at time t, where one can see
the triangular structure with two auxiliary qutrits connected
to each physical qutrit. Each logical qutrit is composed of two
physical qutrits. (b) Two time slices of the lattice, at times t
and t + 1. The figure shows an example of a circuit, where a
phase gate P is applied to |ψt

1〉 and the gate CZ is applied
to |ψt+1

1 〉|ψt+1
2 〉.

will prove that computing the partition function of the
3D Z2 LGT (in a specific, complex parameter regime) is
BQP–complete. Gemma check this Here we will make use
of the gauge symmetry to fix the value of some spins, in-
stead of fixing them boundary conditions as in Sec. VB,
VC. In particular, we will fix the spins in the time di-
rection of edges that connect logical qubits (see below)
at different time slices, and some other spins (not in the
time direction), as will be specified below.

Our goal is to construct, at the logical level, the uni-
versal gate set

Rz(ξ) = |0〉〈0| + eiξ|1〉〈1|
H =

∑1
i,j=0,1(−1)ij |j〉〈i|

σz ⊗ σz =
∑1

i,j=0(−1)i⊕j |ij〉〈ij| .
(60)
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 with auxiliary qubits on a certain complex parameter regime is BQP-complete
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Encoding: |0〉 = |0〉|0〉|0〉|0〉

|1〉 = |1〉|1〉|1〉|1〉

Trivial preparation of |0〉 . . . |0〉 from |R〉 = |0〉 . . . |0〉

 3D      LGTZ2

Each       LGT-type gate is characterized by the pair (eβJii , e
βJi!=j )Z2
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Note that this is a continuous universal gate set Wolf-
gang, is this a problem or an advantage?. Note that this
set includes the single–qubit identity I1, and the two–
qubit identity I2. More precisely, we will use the fol-
lowing encoding of four physical qubits into one logical
qubit:

|0〉 = |0〉|0〉|0〉|0〉
|1〉 = |1〉|1〉|1〉|1〉 .

(61)

The single–qubit identity I1 is achieved by (c, d) =
(1, 0) (see Fig. 8a) .

Gates Rz(ξ) are obtained by letting the logical qubit
interact with a neighboring, auxiliary plaquette which
has all remaining qubits fixed to |0〉, and setting (c, d) =
(1, eiξ) (see Fig. 8b). This acts effectively as a single–
particle interaction for the logical particle.

|0〉

|0〉

|0〉

(1, 0)

(1, eiξ)

|ψ〉

|ψ〉

(1, i)

|ψ1〉

|ψ2〉

|0〉 |0〉(a)

(b) (c)

FIG. 8: The physical qubits composing the logical qubit are
marked with thick, black lines, and qubits fixed by the gauge
symmetry are depicted in gray. The pair of numbers associ-
ated to each gate are (c, d), which determine it. (a) The logical
single–qubit identity I1 is obtained by setting (c, d) = (1, 0) in
the plaquette formed by the four physical qubits that compose
the logical qubit. (b) The logical rotation around the z–axis,
Rz(ξ) is obtained by letting the logical qubit interact with an
auxiliary plaquette whose spins are all fixed to |0〉, and set-
ting (c, d) = (1, eiξ) in this auxiliary plaquette. (c) The only
non–local part of CZ, diag(1, i, i, 1), is implemented by let-
ting the two logical qubits interact via an auxiliary plaquette
with (c, d) = (1, i).

The implementation of the logical Hadamard gate H
(see Fig. 9) is inspired in the idea of teleportation. In
particular, we want to apply H to the logical qubit on
the left of Fig. 9. To this end, we prepare the two logical
qubits on its right in the state |0+〉 + |1−〉, where

|±〉 = |0〉± |1〉 , (62)

by analogy of the conventional definitions with physical
qubits |±〉 = |0〉± |1〉. Then we apply a projection onto
a Bell state |00〉 + |11〉 between the qubit we want to
teleport and the first of these two logical qubits. More
precisely, the three logical qubits are initially in the state
|ψ〉|0〉|0〉, and they are transformed with the following
gates (depicted in Fig. 9):

1. Single qubit gates with (c, d) = (1, 1) to all physical
qubits of the two logical qubits on the right, which
yields the state |ψ〉| + + + +〉⊗2,

2. The four–qubit gate (c, d) = (1, 0) on the second
and third logical qubits, and the four–qubit gates
(c, d) = (1, 1) to all their surrounding plaquettes,
which results in the state |ψ〉|e4〉⊗2, where |e4〉 is
an equal superposition of all even states of 4 qubits,
|e4〉 ≡ |0000〉+ |0011〉+ . . . + |1100〉+ |1111〉.

3. The four–qubit gates with (c, d) = (1, 0) to the sur-
roundings of the two logical qubits on the right,
which results in the state |ψ〉(|0000〉 + |0011〉 +
|1100〉+ |1111〉)⊗2.

4. The four–qubit gates with (c, d) = (1, 0) between
the second and third physical qubits of the last two
logical qubits, which results in the state |ψ〉|+〉⊗2

5. The gate CZ on the last two logical qubits, which
yields the state |ψ〉(|0+〉 + |1−〉).

6. A four–qubit gate with (c, d) = (1, 0) between
the first and the second logical qubit (which cor-
responds to the Bell measurement), and another
four–qubit gate with (c, d) = (1, 0) between the first
and the second logical qubit, which yields the state
H |ψ〉 on the third logical qubit, as desired.

This shows that we can now perform a general single
qubit unitary U , since this can be expressed in its Euler
decomposition

U(α, β, γ) = Rz(α)HRz(β)HRz(γ) . (63)

To generate the logical controlled phase gate CZ we
decompose it into Rz rotations and a non–local gate:

CZ = R(1)
z (−

π

2
)R(2)

z (−
π

2
) diag(1, i, i, 1) . (64)

The last gate is implemented by letting the last two
logical qubits interact via an auxiliary plaquette with
(c, d) = (1, i) (see Fig. 8c).

Finally, we distribute the logical qubits in the 3D lat-
tice as sketched in Fig. 10. We consider that the ver-
tical and the horizontal directions are the spatial ones,
and that time increases in the direction going from paper
to the reader. Then the logical qubits are initially dis-
tributed in a 1D vertical array, situated on the left, rear
part of the circuit. Single qubit gates move the logical
qubits in the time direction, while Hadamard gates move
them to the right. At the end of the circuit, the logical
qubits are situated in a 1D array at the right, front part
of the circuit.

We would like to make some comments concerning of
this construction. First, the realization of I1 requires first
a rescaling of the energy to (c′, d′) = 1, e−2βJ . Then, one
has to let J → ∞.Comment on this.
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precisely, the three logical qubits are initially in the state
|ψ〉|0〉|0〉, and they are transformed with the following
gates (depicted in Fig. 9):

1. Single qubit gates with (c, d) = (1, 1) to all physical
qubits of the two logical qubits on the right, which
yields the state |ψ〉| + + + +〉⊗2,

2. The four–qubit gate (c, d) = (1, 0) on the second
and third logical qubits, and the four–qubit gates
(c, d) = (1, 1) to all their surrounding plaquettes,
which results in the state |ψ〉|e4〉⊗2, where |e4〉 is
an equal superposition of all even states of 4 qubits,
|e4〉 ≡ |0000〉+ |0011〉+ . . . + |1100〉+ |1111〉.

3. The four–qubit gates with (c, d) = (1, 0) to the sur-
roundings of the two logical qubits on the right,
which results in the state |ψ〉(|0000〉 + |0011〉 +
|1100〉+ |1111〉)⊗2.

4. The four–qubit gates with (c, d) = (1, 0) between
the second and third physical qubits of the last two
logical qubits, which results in the state |ψ〉|+〉⊗2

5. The gate CZ on the last two logical qubits, which
yields the state |ψ〉(|0+〉 + |1−〉).

6. A four–qubit gate with (c, d) = (1, 0) between
the first and the second logical qubit (which cor-
responds to the Bell measurement), and another
four–qubit gate with (c, d) = (1, 0) between the first
and the second logical qubit, which yields the state
H |ψ〉 on the third logical qubit, as desired.

This shows that we can now perform a general single
qubit unitary U , since this can be expressed in its Euler
decomposition

U(α, β, γ) = Rz(α)HRz(β)HRz(γ) . (63)

To generate the logical controlled phase gate CZ we
decompose it into Rz rotations and a non–local gate:

CZ = R(1)
z (−

π

2
)R(2)

z (−
π

2
) diag(1, i, i, 1) . (64)

The last gate is implemented by letting the last two
logical qubits interact via an auxiliary plaquette with
(c, d) = (1, i) (see Fig. 8c).

Finally, we distribute the logical qubits in the 3D lat-
tice as sketched in Fig. 10. We consider that the ver-
tical and the horizontal directions are the spatial ones,
and that time increases in the direction going from paper
to the reader. Then the logical qubits are initially dis-
tributed in a 1D vertical array, situated on the left, rear
part of the circuit. Single qubit gates move the logical
qubits in the time direction, while Hadamard gates move
them to the right. At the end of the circuit, the logical
qubits are situated in a 1D array at the right, front part
of the circuit.

We would like to make some comments concerning of
this construction. First, the realization of I1 requires first
a rescaling of the energy to (c′, d′) = 1, e−2βJ . Then, one
has to let J → ∞.Comment on this.

13

Note that this is a continuous universal gate set Wolf-
gang, is this a problem or an advantage?. Note that this
set includes the single–qubit identity I1, and the two–
qubit identity I2. More precisely, we will use the fol-
lowing encoding of four physical qubits into one logical
qubit:

|0〉 = |0〉|0〉|0〉|0〉
|1〉 = |1〉|1〉|1〉|1〉 .

(61)

The single–qubit identity I1 is achieved by (c, d) =
(1, 0) (see Fig. 8a) .

Gates Rz(ξ) are obtained by letting the logical qubit
interact with a neighboring, auxiliary plaquette which
has all remaining qubits fixed to |0〉, and setting (c, d) =
(1, eiξ) (see Fig. 8b). This acts effectively as a single–
particle interaction for the logical particle.

|0〉

|0〉

|0〉

(1, 0)

(1, eiξ)

|ψ〉

|ψ〉

(1, i)

|ψ1〉

|ψ2〉

|0〉 |0〉(a)

(b) (c)

FIG. 8: The physical qubits composing the logical qubit are
marked with thick, black lines, and qubits fixed by the gauge
symmetry are depicted in gray. The pair of numbers associ-
ated to each gate are (c, d), which determine it. (a) The logical
single–qubit identity I1 is obtained by setting (c, d) = (1, 0) in
the plaquette formed by the four physical qubits that compose
the logical qubit. (b) The logical rotation around the z–axis,
Rz(ξ) is obtained by letting the logical qubit interact with an
auxiliary plaquette whose spins are all fixed to |0〉, and set-
ting (c, d) = (1, eiξ) in this auxiliary plaquette. (c) The only
non–local part of CZ, diag(1, i, i, 1), is implemented by let-
ting the two logical qubits interact via an auxiliary plaquette
with (c, d) = (1, i).

The implementation of the logical Hadamard gate H
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precisely, the three logical qubits are initially in the state
|ψ〉|0〉|0〉, and they are transformed with the following
gates (depicted in Fig. 9):

1. Single qubit gates with (c, d) = (1, 1) to all physical
qubits of the two logical qubits on the right, which
yields the state |ψ〉| + + + +〉⊗2,

2. The four–qubit gate (c, d) = (1, 0) on the second
and third logical qubits, and the four–qubit gates
(c, d) = (1, 1) to all their surrounding plaquettes,
which results in the state |ψ〉|e4〉⊗2, where |e4〉 is
an equal superposition of all even states of 4 qubits,
|e4〉 ≡ |0000〉+ |0011〉+ . . . + |1100〉+ |1111〉.

3. The four–qubit gates with (c, d) = (1, 0) to the sur-
roundings of the two logical qubits on the right,
which results in the state |ψ〉(|0000〉 + |0011〉 +
|1100〉+ |1111〉)⊗2.

4. The four–qubit gates with (c, d) = (1, 0) between
the second and third physical qubits of the last two
logical qubits, which results in the state |ψ〉|+〉⊗2

5. The gate CZ on the last two logical qubits, which
yields the state |ψ〉(|0+〉 + |1−〉).

6. A four–qubit gate with (c, d) = (1, 0) between
the first and the second logical qubit (which cor-
responds to the Bell measurement), and another
four–qubit gate with (c, d) = (1, 0) between the first
and the second logical qubit, which yields the state
H |ψ〉 on the third logical qubit, as desired.

This shows that we can now perform a general single
qubit unitary U , since this can be expressed in its Euler
decomposition

U(α, β, γ) = Rz(α)HRz(β)HRz(γ) . (63)

To generate the logical controlled phase gate CZ we
decompose it into Rz rotations and a non–local gate:

CZ = R(1)
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) diag(1, i, i, 1) . (64)

The last gate is implemented by letting the last two
logical qubits interact via an auxiliary plaquette with
(c, d) = (1, i) (see Fig. 8c).

Finally, we distribute the logical qubits in the 3D lat-
tice as sketched in Fig. 10. We consider that the ver-
tical and the horizontal directions are the spatial ones,
and that time increases in the direction going from paper
to the reader. Then the logical qubits are initially dis-
tributed in a 1D vertical array, situated on the left, rear
part of the circuit. Single qubit gates move the logical
qubits in the time direction, while Hadamard gates move
them to the right. At the end of the circuit, the logical
qubits are situated in a 1D array at the right, front part
of the circuit.

We would like to make some comments concerning of
this construction. First, the realization of I1 requires first
a rescaling of the energy to (c′, d′) = 1, e−2βJ . Then, one
has to let J → ∞.Comment on this.
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FIG. 9: Teleportation–based logical Hadamard gate H : the state of the first logical qubit |ψ〉 is transformed to H |ψ〉 on the
third logical qubit after the last step. See the main text for an explanation of every step. See the caption of Fig. 8 for an
explanation of the color and the pair of numbers associated to each gate. Green faces mean (c, d) = (1, 1). Gray edges and
colored edges indicate edges fixed by the gauge, and the colored numbers indicated the time steps at which they are fixed, in
accordance with Fig. 10.

Second, we remark that we most of these gates corre-
spond require to fix complex parameters; more precisely,

βJ = iξ for Rz(ξ) (65)

βJ = 0,∞ for H (66)

βJ = −iπ/4 for σz ⊗ σz (67)

Also need -I

Also (c,d)=(0,1)

Hadamard gate requires complex parameters (because
of the CZL gate). Note also that the logical qubit is
processed ahead in time and moves in space. This turns
out to be convenient in order to avoid the formation of
loops.

Third, constraints in the parameter regime and in the
distribution of the couplings (due to the encoding).

Gemma write this paragraph Thus, this shows that
computing the partition function of the 3D Z2 LGT is a
non–trivial problem (??). Because the 2D Z2 LGT can
be mapped to a 1D Ising model via a duality transfor-
mation [3], its complexity is also in P ??. The 3D Z2

LGT can be mapped via a duality transformation to the
3D Ising model [3], does that imply something for the
complexity of the latter? (in a very specific parameter
regime). On the other hand, recently it was found that
the computing the partition function of the 4D Z2 LGT
in a real parameter regime is NP–complete [15, 16].

VI. FURTHER RESULTS

A. One clean qubit and periodic boundary
conditions

Here we mention a connection between the results ob-
tained on the Ising model in Sec. VB and a scheme
for quantum computation called the ‘one clean qubit
model’. In the latter, one considers a quantum computa-
tion where all qubits but the first one are initialized in the
totally mixed state (and the first qubit is, say, in the state
|0〉). To this initial state, an arbitrary poly–size quantum
circuit may be applied, followed by a single–qubit mea-
surement in the final stage of the computation. This one-
clean-qubit model comprises a scheme that is believed
to be weaker than the full power of quantum computers
but stronger than classical computation (although these
are unproved assertions). The corresponding complexity
class of decision problems that can be solved efficiently
with the one-clean-qubit scheme is called DQC1.

A standard problem that can be solved using one clean
qubit is the problem of estimating normalized traces
of unitary qantum circuits. Let U denote a poly–size
n–qubit quantum circuit composed of, say, two–qubit
gates. Then there exists an efficient quantum algorithm
within the one-clean-qubit scheme which returns a num-
ber c that provides (with exponentially small probability
of failure) an ε-approximation of the normalized trace
2−nTr(U) in poly(n) time, for every ε that scales at most

Hadamard gate:
Note: many spins 
fixed by the gauge
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FIG. 10: A projection of the circuit of the 3D Z2 LGT into its spatial dimension. The figure shows the part of the circuit
with a two–qubit gate, a totally general single qubit rotation, and another two–qubit gate. Logical qubits are indicated with
a thick black line. All edges in the time direction (going out of the paper) which are boundary to a logical qubit are fixed by
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inverse polynomially with n. The technique is a simple
variant of the Hadamard test and we refer to the liter-
ature. Moreover, the problem of estimating normalized
traces of unitary quantum circuits is known to be DQC1–
hard. In other words, this problem captures all problems
that can be solved efficiently within the one-clean-qubit
paradigm. It thus plays a similar role as the unitary ma-
trix element problem for BQP.

Our results obtained in Sec. VB immediately lead to
a complete problem for DQC1 involving Ising partition
functions defined on graphs with periodic boundary con-
ditions. We limit ourselves to a sketch of the argument.
It follows from the discussion in Sec. VB that, for every
poly–size quantum circuit U there exists an Ising model
defined on a planar circuit graph G (which can be found
efficiently), with couplings and temperature as in Theo-
rem 4 and with free boundary conditions, such that Z/γ
provides a 1/poly approximation of the matrix element
〈+|⊗nU |+〉⊗n. Now, instead of |+〉⊗n we consider the
matrix element 〈s|U |s〉 where |s〉 = |s1 . . . sn〉 represents
an arbitrary computational basis state. This matrix el-
ement now coincides with Zs/γ, where Zs denotes the
partition function of the same model (i.e. same graph,
couplings and temperature), however considering bound-
ary conditions where the left and right boundary spins
are fixed in the same configuration s. Such a situation
is equivalent to considering a graph G′ where each left
boundary spin at the k-th ‘row’ in the graph is identified
with its corresponding right boundary spin, and the re-

sulting spin is fixed in the state sk, for all k. One thus
arrives at an Ising model on a new graph G′ which is
obtained from G by enforcing periodic boundary condi-
tions, and where one vertical slice of spins is fixed in the
configuration s. Finally, consider the normalized trace of
the matrix element U , given by 2−n

∑

s〈s|U |s〉. Due to
the above discussion, this normalized trace may hence be
approximated with 1/poly accuracy by

1

2nγ

∑

s

Zs. (68)

But as Zs is the partition function on G′ with one ver-
tical slice of spins fixed in the configuration x, the sum
∑

s Zs ≡ Z ′ simply represents the partition function on
G′ where these spins are now fully summed out. The
quantity Z ′ is hence the full-fledged partition function
on G′ of the Ising model with couplings and tempera-
ture as before, and without any fixed spins or boundary
conditions.

We thus arrive at the following result: consider any
planar circuit graph G. Let t denote the number of hori-
zontal edges in G and let n be its vertical dimension. Let
G′ be the graph obtained by enforcing periodic boundary
conditions on G (as above). Consider a classical Ising
model at inverse temperature β defined on G, where
on each site a constant (complex) magnetic field ha is
present satisfying eβha = i, and on each edge a constant
(complex) coupling Je is present satisfying eβJe = e
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s Zs ≡ Z ′ simply represents the partition function on
G′ where these spins are now fully summed out. The
quantity Z ′ is hence the full-fledged partition function
on G′ of the Ising model with couplings and tempera-
ture as before, and without any fixed spins or boundary
conditions.

We thus arrive at the following result: consider any
planar circuit graph G. Let t denote the number of hori-
zontal edges in G and let n be its vertical dimension. Let
G′ be the graph obtained by enforcing periodic boundary
conditions on G (as above). Consider a classical Ising
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ature. Moreover, the problem of estimating normalized
traces of unitary quantum circuits is known to be DQC1–
hard. In other words, this problem captures all problems
that can be solved efficiently within the one-clean-qubit
paradigm. It thus plays a similar role as the unitary ma-
trix element problem for BQP.

Our results obtained in Sec. VB immediately lead to
a complete problem for DQC1 involving Ising partition
functions defined on graphs with periodic boundary con-
ditions. We limit ourselves to a sketch of the argument.
It follows from the discussion in Sec. VB that, for every
poly–size quantum circuit U there exists an Ising model
defined on a planar circuit graph G (which can be found
efficiently), with couplings and temperature as in Theo-
rem 4 and with free boundary conditions, such that Z/γ
provides a 1/poly approximation of the matrix element
〈+|⊗nU |+〉⊗n. Now, instead of |+〉⊗n we consider the
matrix element 〈s|U |s〉 where |s〉 = |s1 . . . sn〉 represents
an arbitrary computational basis state. This matrix el-
ement now coincides with Zs/γ, where Zs denotes the
partition function of the same model (i.e. same graph,
couplings and temperature), however considering bound-
ary conditions where the left and right boundary spins
are fixed in the same configuration s. Such a situation
is equivalent to considering a graph G′ where each left
boundary spin at the k-th ‘row’ in the graph is identified
with its corresponding right boundary spin, and the re-

sulting spin is fixed in the state sk, for all k. One thus
arrives at an Ising model on a new graph G′ which is
obtained from G by enforcing periodic boundary condi-
tions, and where one vertical slice of spins is fixed in the
configuration s. Finally, consider the normalized trace of
the matrix element U , given by 2−n
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the above discussion, this normalized trace may hence be
approximated with 1/poly accuracy by
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But as Zs is the partition function on G′ with one ver-
tical slice of spins fixed in the configuration x, the sum
∑

s Zs ≡ Z ′ simply represents the partition function on
G′ where these spins are now fully summed out. The
quantity Z ′ is hence the full-fledged partition function
on G′ of the Ising model with couplings and tempera-
ture as before, and without any fixed spins or boundary
conditions.

We thus arrive at the following result: consider any
planar circuit graph G. Let t denote the number of hori-
zontal edges in G and let n be its vertical dimension. Let
G′ be the graph obtained by enforcing periodic boundary
conditions on G (as above). Consider a classical Ising
model at inverse temperature β defined on G, where
on each site a constant (complex) magnetic field ha is
present satisfying eβha = i, and on each edge a constant
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inverse polynomially with n. The technique is a simple
variant of the Hadamard test and we refer to the liter-
ature. Moreover, the problem of estimating normalized
traces of unitary quantum circuits is known to be DQC1–
hard. In other words, this problem captures all problems
that can be solved efficiently within the one-clean-qubit
paradigm. It thus plays a similar role as the unitary ma-
trix element problem for BQP.

Our results obtained in Sec. VB immediately lead to
a complete problem for DQC1 involving Ising partition
functions defined on graphs with periodic boundary con-
ditions. We limit ourselves to a sketch of the argument.
It follows from the discussion in Sec. VB that, for every
poly–size quantum circuit U there exists an Ising model
defined on a planar circuit graph G (which can be found
efficiently), with couplings and temperature as in Theo-
rem 4 and with free boundary conditions, such that Z/γ
provides a 1/poly approximation of the matrix element
〈+|⊗nU |+〉⊗n. Now, instead of |+〉⊗n we consider the
matrix element 〈s|U |s〉 where |s〉 = |s1 . . . sn〉 represents
an arbitrary computational basis state. This matrix el-
ement now coincides with Zs/γ, where Zs denotes the
partition function of the same model (i.e. same graph,
couplings and temperature), however considering bound-
ary conditions where the left and right boundary spins
are fixed in the same configuration s. Such a situation
is equivalent to considering a graph G′ where each left
boundary spin at the k-th ‘row’ in the graph is identified
with its corresponding right boundary spin, and the re-

sulting spin is fixed in the state sk, for all k. One thus
arrives at an Ising model on a new graph G′ which is
obtained from G by enforcing periodic boundary condi-
tions, and where one vertical slice of spins is fixed in the
configuration s. Finally, consider the normalized trace of
the matrix element U , given by 2−n

∑

s〈s|U |s〉. Due to
the above discussion, this normalized trace may hence be
approximated with 1/poly accuracy by

1
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But as Zs is the partition function on G′ with one ver-
tical slice of spins fixed in the configuration x, the sum
∑

s Zs ≡ Z ′ simply represents the partition function on
G′ where these spins are now fully summed out. The
quantity Z ′ is hence the full-fledged partition function
on G′ of the Ising model with couplings and tempera-
ture as before, and without any fixed spins or boundary
conditions.

We thus arrive at the following result: consider any
planar circuit graph G. Let t denote the number of hori-
zontal edges in G and let n be its vertical dimension. Let
G′ be the graph obtained by enforcing periodic boundary
conditions on G (as above). Consider a classical Ising
model at inverse temperature β defined on G, where
on each site a constant (complex) magnetic field ha is
present satisfying eβha = i, and on each edge a constant
(complex) coupling Je is present satisfying eβJe = e
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inverse polynomially with n. The technique is a simple
variant of the Hadamard test and we refer to the liter-
ature. Moreover, the problem of estimating normalized
traces of unitary quantum circuits is known to be DQC1–
hard. In other words, this problem captures all problems
that can be solved efficiently within the one-clean-qubit
paradigm. It thus plays a similar role as the unitary ma-
trix element problem for BQP.

Our results obtained in Sec. VB immediately lead to
a complete problem for DQC1 involving Ising partition
functions defined on graphs with periodic boundary con-
ditions. We limit ourselves to a sketch of the argument.
It follows from the discussion in Sec. VB that, for every
poly–size quantum circuit U there exists an Ising model
defined on a planar circuit graph G (which can be found
efficiently), with couplings and temperature as in Theo-
rem 4 and with free boundary conditions, such that Z/γ
provides a 1/poly approximation of the matrix element
〈+|⊗nU |+〉⊗n. Now, instead of |+〉⊗n we consider the
matrix element 〈s|U |s〉 where |s〉 = |s1 . . . sn〉 represents
an arbitrary computational basis state. This matrix el-
ement now coincides with Zs/γ, where Zs denotes the
partition function of the same model (i.e. same graph,
couplings and temperature), however considering bound-
ary conditions where the left and right boundary spins
are fixed in the same configuration s. Such a situation
is equivalent to considering a graph G′ where each left
boundary spin at the k-th ‘row’ in the graph is identified
with its corresponding right boundary spin, and the re-

sulting spin is fixed in the state sk, for all k. One thus
arrives at an Ising model on a new graph G′ which is
obtained from G by enforcing periodic boundary condi-
tions, and where one vertical slice of spins is fixed in the
configuration s. Finally, consider the normalized trace of
the matrix element U , given by 2−n

∑

s〈s|U |s〉. Due to
the above discussion, this normalized trace may hence be
approximated with 1/poly accuracy by
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∑
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But as Zs is the partition function on G′ with one ver-
tical slice of spins fixed in the configuration x, the sum
∑

s Zs ≡ Z ′ simply represents the partition function on
G′ where these spins are now fully summed out. The
quantity Z ′ is hence the full-fledged partition function
on G′ of the Ising model with couplings and tempera-
ture as before, and without any fixed spins or boundary
conditions.

We thus arrive at the following result: consider any
planar circuit graph G. Let t denote the number of hori-
zontal edges in G and let n be its vertical dimension. Let
G′ be the graph obtained by enforcing periodic boundary
conditions on G (as above). Consider a classical Ising
model at inverse temperature β defined on G, where
on each site a constant (complex) magnetic field ha is
present satisfying eβha = i, and on each edge a constant
(complex) coupling Je is present satisfying eβJe = e
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inverse polynomially with n. The technique is a simple
variant of the Hadamard test and we refer to the liter-
ature. Moreover, the problem of estimating normalized
traces of unitary quantum circuits is known to be DQC1–
hard. In other words, this problem captures all problems
that can be solved efficiently within the one-clean-qubit
paradigm. It thus plays a similar role as the unitary ma-
trix element problem for BQP.

Our results obtained in Sec. VB immediately lead to
a complete problem for DQC1 involving Ising partition
functions defined on graphs with periodic boundary con-
ditions. We limit ourselves to a sketch of the argument.
It follows from the discussion in Sec. VB that, for every
poly–size quantum circuit U there exists an Ising model
defined on a planar circuit graph G (which can be found
efficiently), with couplings and temperature as in Theo-
rem 4 and with free boundary conditions, such that Z/γ
provides a 1/poly approximation of the matrix element
〈+|⊗nU |+〉⊗n. Now, instead of |+〉⊗n we consider the
matrix element 〈s|U |s〉 where |s〉 = |s1 . . . sn〉 represents
an arbitrary computational basis state. This matrix el-
ement now coincides with Zs/γ, where Zs denotes the
partition function of the same model (i.e. same graph,
couplings and temperature), however considering bound-
ary conditions where the left and right boundary spins
are fixed in the same configuration s. Such a situation
is equivalent to considering a graph G′ where each left
boundary spin at the k-th ‘row’ in the graph is identified
with its corresponding right boundary spin, and the re-

sulting spin is fixed in the state sk, for all k. One thus
arrives at an Ising model on a new graph G′ which is
obtained from G by enforcing periodic boundary condi-
tions, and where one vertical slice of spins is fixed in the
configuration s. Finally, consider the normalized trace of
the matrix element U , given by 2−n
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s〈s|U |s〉. Due to
the above discussion, this normalized trace may hence be
approximated with 1/poly accuracy by
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But as Zs is the partition function on G′ with one ver-
tical slice of spins fixed in the configuration x, the sum
∑

s Zs ≡ Z ′ simply represents the partition function on
G′ where these spins are now fully summed out. The
quantity Z ′ is hence the full-fledged partition function
on G′ of the Ising model with couplings and tempera-
ture as before, and without any fixed spins or boundary
conditions.

We thus arrive at the following result: consider any
planar circuit graph G. Let t denote the number of hori-
zontal edges in G and let n be its vertical dimension. Let
G′ be the graph obtained by enforcing periodic boundary
conditions on G (as above). Consider a classical Ising
model at inverse temperature β defined on G, where
on each site a constant (complex) magnetic field ha is
present satisfying eβha = i, and on each edge a constant
(complex) coupling Je is present satisfying eβJe = e
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variant of the Hadamard test and we refer to the liter-
ature. Moreover, the problem of estimating normalized
traces of unitary quantum circuits is known to be DQC1–
hard. In other words, this problem captures all problems
that can be solved efficiently within the one-clean-qubit
paradigm. It thus plays a similar role as the unitary ma-
trix element problem for BQP.

Our results obtained in Sec. VB immediately lead to
a complete problem for DQC1 involving Ising partition
functions defined on graphs with periodic boundary con-
ditions. We limit ourselves to a sketch of the argument.
It follows from the discussion in Sec. VB that, for every
poly–size quantum circuit U there exists an Ising model
defined on a planar circuit graph G (which can be found
efficiently), with couplings and temperature as in Theo-
rem 4 and with free boundary conditions, such that Z/γ
provides a 1/poly approximation of the matrix element
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an arbitrary computational basis state. This matrix el-
ement now coincides with Zs/γ, where Zs denotes the
partition function of the same model (i.e. same graph,
couplings and temperature), however considering bound-
ary conditions where the left and right boundary spins
are fixed in the same configuration s. Such a situation
is equivalent to considering a graph G′ where each left
boundary spin at the k-th ‘row’ in the graph is identified
with its corresponding right boundary spin, and the re-

sulting spin is fixed in the state sk, for all k. One thus
arrives at an Ising model on a new graph G′ which is
obtained from G by enforcing periodic boundary condi-
tions, and where one vertical slice of spins is fixed in the
configuration s. Finally, consider the normalized trace of
the matrix element U , given by 2−n
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But as Zs is the partition function on G′ with one ver-
tical slice of spins fixed in the configuration x, the sum
∑

s Zs ≡ Z ′ simply represents the partition function on
G′ where these spins are now fully summed out. The
quantity Z ′ is hence the full-fledged partition function
on G′ of the Ising model with couplings and tempera-
ture as before, and without any fixed spins or boundary
conditions.

We thus arrive at the following result: consider any
planar circuit graph G. Let t denote the number of hori-
zontal edges in G and let n be its vertical dimension. Let
G′ be the graph obtained by enforcing periodic boundary
conditions on G (as above). Consider a classical Ising
model at inverse temperature β defined on G, where
on each site a constant (complex) magnetic field ha is
present satisfying eβha = i, and on each edge a constant
(complex) coupling Je is present satisfying eβJe = e
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FIG. 10: A projection of the circuit of the 3D Z2 LGT into its spatial dimension. The figure shows the part of the circuit
with a two–qubit gate, a totally general single qubit rotation, and another two–qubit gate. Logical qubits are indicated with
a thick black line. All edges in the time direction (going out of the paper) which are boundary to a logical qubit are fixed by
the gauge (pink dots). Edges in the spatial direction are either not fixed by the gauge (black, thin lines), or are fixed by the
gauge in different time steps 1,. . . , 13, indicated with a color for each time step. Hence, a loop of edges fixed by the gauge
corresponds in this figure to a loop of colored edges.

inverse polynomially with n. The technique is a simple
variant of the Hadamard test and we refer to the liter-
ature. Moreover, the problem of estimating normalized
traces of unitary quantum circuits is known to be DQC1–
hard. In other words, this problem captures all problems
that can be solved efficiently within the one-clean-qubit
paradigm. It thus plays a similar role as the unitary ma-
trix element problem for BQP.

Our results obtained in Sec. VB immediately lead to
a complete problem for DQC1 involving Ising partition
functions defined on graphs with periodic boundary con-
ditions. We limit ourselves to a sketch of the argument.
It follows from the discussion in Sec. VB that, for every
poly–size quantum circuit U there exists an Ising model
defined on a planar circuit graph G (which can be found
efficiently), with couplings and temperature as in Theo-
rem 4 and with free boundary conditions, such that Z/γ
provides a 1/poly approximation of the matrix element
〈+|⊗nU |+〉⊗n. Now, instead of |+〉⊗n we consider the
matrix element 〈s|U |s〉 where |s〉 = |s1 . . . sn〉 represents
an arbitrary computational basis state. This matrix el-
ement now coincides with Zs/γ, where Zs denotes the
partition function of the same model (i.e. same graph,
couplings and temperature), however considering bound-
ary conditions where the left and right boundary spins
are fixed in the same configuration s. Such a situation
is equivalent to considering a graph G′ where each left
boundary spin at the k-th ‘row’ in the graph is identified
with its corresponding right boundary spin, and the re-

sulting spin is fixed in the state sk, for all k. One thus
arrives at an Ising model on a new graph G′ which is
obtained from G by enforcing periodic boundary condi-
tions, and where one vertical slice of spins is fixed in the
configuration s. Finally, consider the normalized trace of
the matrix element U , given by 2−n

∑

s〈s|U |s〉. Due to
the above discussion, this normalized trace may hence be
approximated with 1/poly accuracy by

1

2nγ

∑

s

Zs. (68)

But as Zs is the partition function on G′ with one ver-
tical slice of spins fixed in the configuration x, the sum
∑

s Zs ≡ Z ′ simply represents the partition function on
G′ where these spins are now fully summed out. The
quantity Z ′ is hence the full-fledged partition function
on G′ of the Ising model with couplings and tempera-
ture as before, and without any fixed spins or boundary
conditions.

We thus arrive at the following result: consider any
planar circuit graph G. Let t denote the number of hori-
zontal edges in G and let n be its vertical dimension. Let
G′ be the graph obtained by enforcing periodic boundary
conditions on G (as above). Consider a classical Ising
model at inverse temperature β defined on G, where
on each site a constant (complex) magnetic field ha is
present satisfying eβha = i, and on each edge a constant
(complex) coupling Je is present satisfying eβJe = e

iπ
4 .

BQP-completeness resultsII

 3D      LGTZ2



Summary



Summary
 Completeness

Z
=

〈α
|ψ
〉

 Complexity

Z
=

〈L
|C
|R

〉

✓ any dimensions

✓ q-level systems, any q

✓ any many-body int.

real Abelian discrete

Z4DZ2LGT(J, J ′) = Zany classical spin model(J)

Six vertex model
Potts model
3D       LGTZ2

Approximating Z of is BQP-complete

in a certain complex 
parameter regime



Thank you for your 
attention!

GDlC, M. Van den Nest, W. Dür, H. J. Briegel, M.A. Martin-Delgado, 
Computational complexity of classical lattice models (in preparation)

GDlC, W. Dür, M. Van den Nest, H. J. Briegel, JSTAT P07001 (2009)

GDlC, W. Dür, H. J. Briegel, M. A. Martin-Delgado, Phys. Rev. Lett. 102, 230502 (2009)

GDlC, W. Dür, H. J. Briegel, M. A. Martin-Delgado, New J. Phys. 12, 043014 (2010)

M. Van den Nest, W. Dür, H. J. Briegel, Phys. Rev. Lett. 100, 110501(2008)

M. Van den Nest, W. Dür, R. Raussendorf, H. J. Briegel, Phys. Rev. A 80, 052334 (2009)

Y. Xu, GDlC, W. Dür, H. J. Briegel, M.A. Martin-Delgado, 
Completeness of a U(1) lattice gauge theory (in preparation)

C
om

pl
et

en
es

s
C

om
pl

ex
ity

**

**

**

**


