Unifying classical spin models using a quantum formalism

* Gemma De las Cuevas

Ying Xu
Wolfgang Dür
Hans J. Briegel
OInnsbruck
Maarten Van den Nest
@ MPQ Garching.
Miguel Angel Martin-Delgado @ Madrid
Vancouver, 23rd July 2010

Outline

~Motivation

\sim Completeness The $4 \mathrm{D} \mathbb{Z}_{2}$ lattice gauge theory is complete
\sim Complexity
Approximating the partition function of some models is BQP-complete
\sim Summary

Motivation

Motivation

\sim Classical spin models:

- Classical magnetism

- Spin glasses
- Neural networks
- Econophysics

Motivation

\sim Classical spin models:

- Classical magnetism

- Spin glasses
- Neural networks
- Econophysics

Motivation

~Many different kinds of classical spin models

- Different dimensions, defined on complicated graphs...
- Many-body interactions...

Motivation

~ Many different kinds of classical spin models

- Different dimensions, defined on complicated graphs...
- Many-body interactions...

- Symmetries:

$$
\begin{aligned}
& \text { Global: using, Potts ... } \\
& H(\mathbf{s})=-J \sum_{(i, j) \in E} s_{i} s_{j} \\
& \begin{array}{ccl}
\uparrow \downarrow \downarrow \downarrow \downarrow & \xrightarrow[\text { flip }]{\text { global }} & \downarrow \uparrow \uparrow \uparrow \uparrow \\
H(\mathbf{s}) & = & H\left(\mathbf{s}^{\prime}\right)
\end{array}
\end{aligned}
$$

Local: lattice gauge theories

$$
H(\mathbf{s})=-J \sum_{(i, j, k, l) \in \partial f} s_{i} s_{j} s_{k} s_{l}
$$

Motivation

Can one relate all these models?
By studying one model, can one learn something of other models?

Motivation

Can one relate all these models?
 By studying one model, can one learn something of other models?

Completeness results:

Models with different features can be mapped onto a single model
~ Use Quantum Information tools to relate them
\sim In equilibrium the crucial quantity: partition function $Z=\sum_{\mathbf{s}} e^{-\beta H(\mathbf{s})}$

Completeness

Completeness

A model is 'complete'

Its partition function can specialize (by tuning its coupling strengths)
to the partition function of any other classical spin model

Completeness of the 2D Ising

\sim Result:
$Z_{2 \text { D Ising with } h}\left(J, J^{\prime}\right)=Z_{\text {any classical spin model }}(J)$

\uparrow
Ising, Potts, ...
\checkmark on an arbitrary graph
$\checkmark q$-level systems, any q
\checkmark any many-body int.

Completeness of the 2D Ising

\sim Result:
$Z_{2 \text { D Ising with } h}\left(J, J^{\prime}\right)=Z_{\text {any classical spin model }}(J)$

\uparrow Ising, Potts, ... \checkmark on an arbitrary graph $\checkmark q$-level systems, any q \checkmark any many-body int.

Completeness with real coupl.

\sim Result:

- Ising model:

$$
Z_{3 \mathrm{D} \text { Ising }}\left(J, J^{\prime}\right)=Z_{\text {Ising, any } G}(J)
$$

- Analogous for q-level systems

Completeness with real coupl.

\sim Result:

- Ising model:

4. same kind of interactions

- Analogous for q-level systems

Completeness with real coupl.

~Result:

- Ising model:

4. same kind of interactions

- Analogous for q-level systems
©GDIC, W. Dür, M. Van den Nest, H. J. Briegel, JSTAT P07001 (2009)

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Main result:
constructive

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Idea of the proof:
all k-cliques for $k=1, \ldots, n$
\sum with Ising-type int.

4D \mathbb{Z}_{2} LGT

Superclique

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Idea of the proof:
all k-cliques for $k=1, \ldots, n$
with Ising-type int.

4D \mathbb{Z}_{2} LGT

Superclique

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Idea of the proof:

4D \mathbb{Z}_{2} LGT

Superclique

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Idea of the proof:

4D \mathbb{Z}_{2} LGT

Superclique

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Idea of the proof:

4D \mathbb{Z}_{2} LGT

\longrightarrow Superclique

Hamiltonian!

Any Abelian discrete classical spin model

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Idea of the proof:

4D \mathbb{Z}_{2} LGT

Superclique
Any Abelian discrete classical spin model Hamiltonian!

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Quantum formulation of Abelian discrete LGTs

- Hamiltonian $H(\mathbf{s})=-\sum_{f \in F} J_{f} \cos \left[\frac{2 \pi}{q}\left(s_{1}+\ldots+s_{k}\right)_{\bmod q}\right]$

Partition function: $\quad Z_{G}(J)=\sum_{\mathbf{s}} e^{-\beta H(\mathbf{s})}$

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Quantum formulation of Abelian discrete LGTs

- Hamiltonian $H(\mathbf{s})=-\sum_{f \in F} J_{f} \cos \left[\frac{2 \pi}{q}\left(s_{1}+\ldots+s_{k}\right)_{\bmod q}\right]$

Partition function: $\quad Z_{G}(J)=\sum_{\mathbf{s}} e^{-\beta H(\mathbf{s})}$

- State defined on the faces:
$\left|\psi_{G}\right\rangle=\sum_{\mathbf{s}} \bigotimes_{f \in F}\left|\left(s_{1}+\cdots+s_{k}\right)_{\bmod q}\right\rangle_{f}$
Product state with coefficients: $|\alpha(J)\rangle=\bigotimes_{f}\left|\alpha_{f}\left(J_{f}\right)\right\rangle$
$\left|\alpha_{f}\left(J_{f}\right)\right\rangle=\sum_{s_{e} \in \partial f} e^{\beta J_{f} \cos \left[\frac{2 \pi}{q}\left(s_{1}+\ldots+s_{k}\right)\right]}\left|s_{1}+\ldots+s_{k}\right\rangle_{f}$

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Quantum formulation of Abelian discrete LGTs

- Hamiltonian $H(\mathbf{s})=-\sum_{f \in F} J_{f} \cos \left[\frac{2 \pi}{q}\left(s_{1}+\ldots+s_{k}\right)_{\bmod q}\right]$

Partition function: $\quad Z_{G}(J)=\sum_{\mathbf{s}} e^{-\beta H(\mathbf{s})}$

- State defined on the faces:

$$
\left|\psi_{G}\right\rangle=\sum_{\mathbf{s}} \bigotimes_{f \in F}\left|\left(s_{1}+\cdots+s_{k}\right)_{\bmod q}\right\rangle_{f}
$$

Product state with coefficients: $|\alpha(J)\rangle=\bigotimes_{f}\left|\alpha_{f}\left(J_{f}\right)\right\rangle$

$$
\left|\alpha_{f}\left(J_{f}\right)\right\rangle=\sum_{s_{e} \in \partial f} e^{\beta J_{f} \cos \left[\frac{2 \pi}{q}\left(s_{1}+\ldots+s_{k}\right)\right]}\left|s_{1}+\ldots+s_{k}\right\rangle_{f}
$$

$$
Z_{G}(J)=\left\langle\alpha(J) \mid \psi_{G}\right\rangle
$$

Completeness of the 4D \mathbb{Z}_{2} LGT

~Tools to 'transform' the model:

- Merge rule:

- Deletion rule:

- Fixing the spins using the gauge symmetry:

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Construction of the superclique

- Construction of many-body Ising-type int.:

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Construction of the superclique

- Transportation in the 4D lattice:

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim Construction of the superclique

- Layout of the superclique:

Completeness of the 4D \mathbb{Z}_{2} LGT

Hamiltonian of superclique

Hamiltonian of any classical spin model

1. General Hamiltonian on $n 2$-level systems: different $E(\mathbf{s})$ for each \mathbf{s}
2. Show that one can invert the system of equations

3. All rows are linearly independent, thus the determinant is non zero
4. q-level models: encode each q-level system into $\left\lceil\log _{2} q\right\rceil 2$-level sys.

Completeness of the 4D \mathbb{Z}_{2} LGT

~ Note: efficient constructions for specific target models Example: 2D Ising model: linear overhead \checkmark

Completeness of the 4D \mathbb{Z}_{2} LGT

\sim We have proven that:
constructive

Target hamiltonian with M terms and k-body int: scaling $\operatorname{poly}\left(M, 2^{k}\right)$

- Result holds approx for continuous models: let $q \rightarrow \infty$

Applications of completeness

\sim Symmetries of the states \Rightarrow symmetries of the partition function

$$
Z_{G}(J)=\underbrace{\langle\alpha(J)| S)}_{\left\langle\alpha\left(J^{\prime}\right)\right|} \varphi_{G}\rangle=Z_{G}\left(J^{\prime}\right)
$$

~Mapping models with poly overhead: infer comput. complexity
e.g. 2D Ising with fields
\#P-hard

$$
\xrightarrow[\text { poly larger }]{ } \quad \begin{aligned}
& 4 \mathrm{D} \mathbb{Z}_{2} \mathrm{LGT} \\
& \# \mathrm{P} \text {-hard }
\end{aligned}
$$

\sim Many different universality classes are mapped to a single model

They should be reproducible in the phase diagram of the complete model

Computational
complexity

(I) Mapping partition functions

 to quantum circuits
Classical spin model

- Boltzmann weight of each int.

$$
w^{a}=e^{-\beta h^{a}\left(s_{1}, s_{2}\right)} \quad \longrightarrow
$$

Quantum gate, e.g.
$W_{(12)(12)}^{a}=\sum e^{-\beta h^{a}\left(s_{1}, s_{2}\right)}\left|s_{1}, s_{2}\right\rangle\left\langle s_{1}, s_{2}\right|$

- Product of interactions

$$
\Pi \omega^{u^{a}}
$$

- Left \& Right bound. cond.

$$
\begin{aligned}
L & =\left(s_{1}^{L}, \ldots, s_{n}^{L}\right) \quad \longrightarrow \quad|L\rangle \\
R & =\left|s_{1}^{L}\right\rangle \ldots\left|s_{n}^{L}\right\rangle \\
|R\rangle & =\left|s_{1}^{R}\right\rangle \ldots\left|s_{n}^{R}\right\rangle
\end{aligned}
$$

$$
Z^{L, R}=\langle L| \mathcal{C}|R\rangle
$$

M. Van den Nest, W. Dür, R. Raussendorf, H. J. Briegel, Phys. Rev. A 80, 052334 (2009)

(I) Mapping partition functions to quantum circuits

~Mapping for vertex models

- Particles at the edges
- Interaction at vertex a

Two-qudit gate

$$
w^{a}(\mathbf{s})=\sum e^{-\beta h^{a}\left(s_{i} s_{j} s_{k} s_{l}\right)} \longrightarrow W_{(i j)(k l)}^{a}=\sum e^{-\beta h^{a}\left(s_{i} s_{j} s_{k} s_{l}\right)}\left|s_{i}, s_{j}\right\rangle\left\langle s_{k} s_{l}\right|
$$

(I) Mapping partition functions to quantum circuits

~ Mapping for edge models

- Particles at the vertices
- Int. at edge in time dir.

$$
w^{i j}=e^{-\beta h\left(s_{i}, s_{j}\right)} \quad \longrightarrow \quad w_{(i)(j)}=\sum e^{-\beta h\left(s_{i}, s_{j}\right)}\left|s_{i}\right\rangle\left\langle s_{j}\right|
$$

Single qudit gate

- Int. at edge in space dir. \qquad Two qudit diagonal gate

$$
w^{j k}=e^{-\beta h\left(s_{j}, s_{k}\right)} \quad \longrightarrow \quad w_{(j k)(j k)}=\sum e^{-\beta h\left(s_{j}, s_{k}\right)}\left|s_{j} s_{k}\right\rangle\left\langle s_{j} s_{k}\right|
$$

$Z_{\mathrm{em}}^{L, R}=\langle L| \mathcal{C}|R\rangle{ }_{\text {time }}$

(I) Mapping partition functions to quantum circuits

\sim Mapping for lattice gauge theories

- Particles at the edges \& Fixing the temporal gauge
- Int. at face in time dir.

$$
w^{i j}=e^{-\beta h\left(s_{i}, s_{j}\right)} \quad \longrightarrow \quad w_{(i)(j)}=\sum e^{-\beta h\left(s_{i}, s_{j}\right)}\left|s_{i}\right\rangle\left\langle s_{j}\right|
$$

- Int. at face in space dir.

Four qudit diagonal gate

(II) BQP-completeness results

~ Main idea:
Model $\leadsto \begin{gathered}\text { Gates corresp. } \\ \text { to that model }\end{gathered} \sim \begin{gathered}\text { Show that they form } \\ \text { a universal gate set }\end{gathered}$

$$
Z \quad Z=\langle L| \mathcal{C}|R\rangle
$$

Approximating that partition function is as hard as simulating arbitrary quantum computation

(II) BQP-completeness results

~ Main idea:

Model

Gates corresp. to that model

$$
Z=\langle L| \mathcal{C}|R\rangle
$$

Approximating that partition function is as hard as simulating arbitrary quantum computation

(II) BQP-completeness results

~ Main idea:

Model

Gates corresp. to that model

$$
Z Z=\langle L| \mathcal{C}|R\rangle
$$

Approximating that partition function is as hard as simulating arbitrary quantum computation
~Prove BQP-completeness of computing Z
\sim Provide a quantum algorithm

(II) BQP-completeness results

\sim Six vertex model

- (Encoded) universal interaction $U=e^{i t H_{\mathrm{ex}}}$ with $H_{\mathrm{ex}}=\sigma_{x} \otimes \sigma_{x}+\sigma_{y} \otimes \sigma_{y}+\sigma_{z} \otimes \sigma_{z}$
- Encoding $|\mathbf{0}\rangle=\frac{1}{2}(|01\rangle-|10\rangle)^{\otimes 2}$
- Preparation of $|\mathbf{0}\rangle|\mathbf{0}\rangle \ldots|\mathbf{0}\rangle$ from $|R\rangle=|0\rangle|1\rangle|0\rangle|1\rangle \ldots$ possible
- The exchange int. is achieved with the six-vertex model-type gate:

$$
W_{(i j)(j k)}=\left[\begin{array}{llll}
e^{i 2 t} & & & \\
& \cos (2 t) & i \sin (2 t) & \\
& i \sin (2 t) & \cos (2 t) & \\
& & & e^{i 2 t}
\end{array}\right]
$$

(II) BQP-completeness results

\sim Six vertex model

- (Encoded) universal interaction $U=e^{i t H_{\mathrm{ex}}}$ with $H_{\mathrm{ex}}=\sigma_{x} \otimes \sigma_{x}+\sigma_{y} \otimes \sigma_{y}+\sigma_{z} \otimes \sigma_{z}$
- Encoding $|\mathbf{0}\rangle=\frac{1}{2}(|01\rangle-|10\rangle)^{\otimes 2}$
- Preparation of $|\mathbf{0}\rangle|\mathbf{0}\rangle \ldots|\mathbf{0}\rangle$ from $|R\rangle=|0\rangle|1\rangle|0\rangle|1\rangle \ldots$ possible
- The exchange int. is achieved with the six-vertex model-type gate:

$$
W_{(i j)(j k)}=\left[\begin{array}{llll}
e^{i 2 t} & & & \\
& \cos (2 t) & i \sin (2 t) & \\
& i \sin (2 t) & \cos (2 t) & \\
& & & e^{i 2 t}
\end{array}\right]
$$

Approximating the partition function of the six vertex model on a certain complex parameter regime is BQP-complete

(II) BQP-completeness results

\sim Potts model

- Encoding: $|\mathbf{0}\rangle=|0\rangle|1\rangle$

$$
|\mathbf{1}\rangle=|1\rangle|2\rangle
$$

- Trivial preparation of $|\mathbf{0}\rangle \ldots|\mathbf{0}\rangle$ from $|R\rangle=|0\rangle|1\rangle \ldots|0\rangle|1\rangle$
- Each Potts gate is characterized by the pair ($\left.e^{\beta J_{i i}}, e^{\beta J_{i \neq j}}\right)$
- Construct an (encoded) universal gate set:

Single qubit identity

Two qubit identity
Controlled phase gate

$\not \mathscr{\Psi}^{\mathscr{G}} \mathrm{GDIC}$, M. Van den Nest, W. Dür, H. J. Briegel, M.A. Martin-Delgado (in preparation)

(II) BQP-completeness results

Example of part of a circuit:

$\}$ Note distribution of physical and auxiliary qubits

(II) BQP-completeness results

Example of part of a circuit:

§ Note distribution of physical and auxiliary qubits

Approximating the partition function of a 2D 3-level Potts with auxiliary qubits on a certain complex parameter regime is BQP-complete

(II) BQP-completeness results

$\sim 3 \mathrm{D} \mathbb{Z}_{2}$ LGT

- Encoding: $\quad|\mathbf{0}\rangle=|0\rangle|0\rangle|0\rangle|0\rangle$

$$
|\mathbf{1}\rangle=|1\rangle|1\rangle|1\rangle|1\rangle
$$

- Trivial preparation of $|\mathbf{0}\rangle \ldots|\mathbf{0}\rangle$ from $|R\rangle=|0\rangle \ldots|0\rangle$
- Each \mathbb{Z}_{2} LGT-type gate is characterized by the pair ($\left.e^{\beta J_{i i}}, e^{\beta J_{i \neq j}}\right)$
- Construct an (encoded) universal gate set:

Controlled phase gate

(II) BQP-completeness results

$\sim 3 \mathrm{D} \mathbb{Z}_{2}$ LGT

Hadamard gate:

(II) BQP-completeness results

$\sim 3 \mathrm{D} \mathbb{Z}_{2}$ LGT

Verify that there are no loops of spins fixed by the gauge:
Two-qubit gate
Single-qubit gate
Two-qubit gate

(II) BQP-completeness results

$\sim 3 \mathrm{D} \mathbb{Z}_{2}$ LGT

Verify that there are no loops of spins fixed by the gauge:
Two-qubit gate
Single-qubit gate
Two-qubit gate

Approximating the partition function of a 3D \mathbb{Z}_{2} LGT on a certain complex parameter regime is BQP-complete

Summary

Summary

\sim Completeness

$$
\begin{array}{cl}
Z_{4 \mathrm{D} \mathbb{Z}_{2} \mathrm{LGT}}\left(J, J^{\prime}\right) & =Z_{\text {any classical spin model }}(J) \\
\uparrow & \uparrow \\
\text { belial discrete }
\end{array}
$$

~ Complexity
Approximating Z of Six vertex model is BQP-complete Potts model SD \mathbb{Z}_{2} LGT in a certain complex parameter regime

Thank you for your attention!

> M. Van den Nest, W. Dür, H. J. Briegel, Phys. Rev. Lett. 100, 110501 (2008)
\nsubseteq GDIC, W. Dür, M. Van den Nest, H. J. Briegel, JSTAT P07001 (2009)
** \& GDIC, W. Dür, H. J. Briegel, M. A. Martin-Delgado, Phys. Rev. Lett. 102, 230502 (2009)
** \neq GDIC, W. Dür, H. J. Briegel, M. A. Martin-Delgado, New J. Phys. 12, 043014 (2010)
\& Y. Xu, GDIC, W. Dür, H. J. Briegel, M.A. Martin-Delgado, Completeness of a U(1) lattice gauge theory (in preparation)
** M. Van den Nest, W. Dür, R. Raussendorf, H. J. Briegel, Phys. Rev. A 80, 052334 (2009)
** GDIC, M. Van den Nest, W. Dür, H. J. Briegel, M.A. Martin-Delgado, Computational complexity of classical lattice models (in preparation)

