Fractional scaling of quantum Walks

on Percolation Lattices

Viv Kendon

Talk for **QAMF 2010**, **UBC Vancouver**

preprint: ArXiv:1006.1283

Ouantum Information School of Physics & Astronomy University of Leeds Leeds LS2 9JT V.Kendon@leeds.ac.uk

...with contributions from PhD students: Neil Lovett and Katie Barr

2008: 2010: 2009:

Joe Bailey Rob Heath Sally Cooper Project Paul Knott Matt Everitt **Matt Everitt** students: Godfrey Leung

Daniel Fry **Matt Trevers**

(PK,SC,MT)

Royal Society University Research Fellowship (VK); Summer bursary (JB)

Overview

- 1. Introduction & motivation (quantum walks; percolation lattices)
- 2. Quantum walks on line with gaps (and simple tunnelling model)
- 3. 2D percolation lattice (fractional scaling)
- 4. Summary and outlook (what's next)

Classical Random Walk on a Line

Recipe:

- 1. Start at the origin
- 2. Toss a fair coin, result is heads or tails
- 3. Move one unit: right for heads, <u>left</u> for tails
- 4. Repeat steps 2. and 3. T times
- 5. Measure position of walker, $-T \le x \le T$

Repeat steps 1. to 5. many times

 \longrightarrow prob. dist. P(x,T), binomial

standard deviation $\langle x^2 \rangle^{1/2} = \sqrt{T}$

Quantum Walk on a Line

Recipe:

- 1. Start at the origin
- 2. Toss a qubit (quantum coin) $\mathbf{H}|0\rangle \longrightarrow (|0\rangle + |1\rangle)/\sqrt{2}$ $\mathbf{H}|1\rangle \longrightarrow (|0\rangle |1\rangle)/\sqrt{2}$
- 3. Move <u>left</u> and <u>right</u> according to qubit state $\mathbf{S}|x,0\rangle \longrightarrow |x-1,0\rangle$ $\mathbf{S}|x,1\rangle \longrightarrow |x+1,1\rangle$

- 4. Repeat steps 2. and 3. T times
- 5. measure position of walker, $-T \le x \le T$

Repeat steps 1. to 5. many times \longrightarrow prob. dist. P(x,T)...

Quantum vs Classical on a Line

Analytical solution:

Nayak

Vishwanath

quant-ph/0010117

and

Ambainis

Bach Nayak

Vishwanath Watrous

STOC'01 pp60-69 2001

quantum spread $\propto T$ compared with classical \sqrt{T}

Decoherence model for quantum walks

Markovian noise, rate of decoherence: *p* per unit time – independent of any previous decoherence events.

Discrete time quantum walk (S = shift, C = coin toss):

$$\boldsymbol{\rho}(t+1) = (1-\rho)\mathbf{S}\mathbf{C}\boldsymbol{\rho}(t)\mathbf{C}^{\dagger}\mathbf{S}^{\dagger} + \rho\sum_{i}\mathbb{P}_{i}\mathbf{S}\mathbf{C}\boldsymbol{\rho}(t)\mathbf{C}^{\dagger}\mathbf{S}^{\dagger}\mathbb{P}_{i}^{\dagger}$$

Continuous time quantum walk (hopping rate γ per unit time):

$$\frac{d\boldsymbol{\rho}(t)}{dt} = -i\gamma[\mathbf{A}, \boldsymbol{\rho}] - p\boldsymbol{\rho} + p\sum_{i} \mathbb{P}_{i}\boldsymbol{\rho}\mathbb{P}_{i}^{\dagger}$$

 \longrightarrow effect is to reduce size of off-diagonal elements of ρ

6/19

Interpolate quantum ← classical

Add decoherence (measure with prob *p* at each step):

Top hat distribution for just the right amount of noise! [quant-ph/0209005]

Beyond the line

Can "quantum walk" on any graph structure:

a cycle:

(010) (011) (000) (000) (100) (001)

...or lattices:

...or grids:

need larger coin: one dimension per edge quant-ph/0304204, quant-ph/0504042

Motivation:

Role of symmetry in quantum speed up?

- nice properties of quantum walks appear on structures with high symmetry...
- evidence that the symmetry is required:
 - properties disappear when symmetry breaks...
- look at less regular systems: choose percolation lattices
- well studied, simple, wide range of applications
- non-trivial phase transition with high upper critical dimension
- disordered but not so random there is no structure

Percolation lattices:

- Two types: bond (edge) and site (vertex)
- bond or site is present in lattice with probability p
- phase transition at $p_c = 0.5$ (bond) or $p_c = 0.5927...$ (site) in 2D lattices
- $p < p_c$: connected structures small $p > p_c$: connections link most of lattice, "one giant cluster", conductivity > 0
- line (1D): no (non-trivial) phase transition: single missing bond breaks line into two large structures...

Nonetheless, start with 1D, can still learn something useful.

Percolation on a line

Gaps on a line prevent both classical and quantum walkers from proceeding.

effect of gaps is like decoherence, spreading returns to classical scaling – bit with larger prefactor

Percolation on a line - with tunnelling

alternative: add a simple model of quantum tunnelling:

- unbiased coin for edges present
- biased coin allows hopping over missing edges with small probability η

regularly placed gaps equivalent to study by Linden and Sharam arXiv:0906.3692v1 quantum behaviour but widely different spreading rates $(\eta = 0.25 \text{ below})$

Quantum walk on 2D lattice

one initial state gives good spreading

[Tregenna, Flanagan, Maile, VK, NJP 5 83 (2003)]

rest give central peak, but intermediate spreading – this is worst case

Quantum walk on 2D percolation lattice

- size in key is number of time steps
- calculate (r) for single percolation lattice, then
- average over many (5000) random percolation lattices
- log-linear plot: values of $\langle \langle r \rangle \rangle$ below 1 not important

Note finite size effects: $10 \longrightarrow 100$ peel off below p_c

Vary initial state:

max and min correspond to initial states ran is random phases in max state $sd(\langle r \rangle)$ is variability of $\langle r \rangle$ over percolation lattices – higher for site percolation

Look at scaling of spreading

noting finite size effects... use range $100 \longrightarrow 140$ to fit for scaling

Fractional scaling:

fit data in range 100 \longrightarrow 140 to $\langle\langle r \rangle\rangle \sim T^{\alpha}$

 p_c $rise <math>0 < \alpha < 0.5$ 0.85 $rise <math>0.5 < \alpha \le 1$

(inset tests finite size convergence using lower cut off for fits)

17/19

Compare classical scaling:

- would be nice to know how classical random walk on percolation lattice scales...

same as before
(without inset) with
classical added...
same parameters for
fitting, 100 → 140
still significant
finite size effects...

- faster quantum spreading!
- need classical random walk ~ 900 steps to sample at same rate?

Summary – ArXiv:1006.1283

- classical simulation of quantum walk on 1- and 2-dimensional percolation lattices
- 1D the missing edges induce decoherence at large times
- 2D shows fractional scaling $0 < \alpha \le 1$ for p_c
- comparison of classical scaling hindered by finite size effects on tractable lattice sizes!
- timescales ≤ 10³: quantum still dominates?

Further work:

- use percolation lattices to explore properties of quantum walk search algorithm
- can classical simulations of quantum walks do better for analysing percolation lattices?!

transport, scaling exponents...quantum methods to calculate them?

