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Motivation

� Protect Adiabatic Quantum Computation (AQC) against decoherence and control errors

� Find rigorous bounds on �delity of AQC in presence of coupling to environment

� Main result of this talk:

Theorem: AQC can be performed with a �delity approaching 1 as a power law in the system

size, using only 2-local Hamiltonians, in the presence of 1-local noise, assuming access to

(dynamical decoupling) pulses whose width and intervals shrink as a power law in the system

size. The power law exponent is linear in the dynamical critical exponent of the closed system.

Main reference:

DAL, �Towards Fault Tolerant Adiabatic Quantum Computation�, Phys. Rev. Lett. 100,
160506 (2008)
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In other words:

You can get arbitrarily accurate open-system AQC for the following price:

� Design your adiabatic evolution Hamiltonian (2-local) so that it is analytic
and has N zero derivatives at the initial and �nal times.

� Apply dynamical decoupling pulses generated by global magnetic �elds in
the x and z directions. The shorter the pulses and pulse intervals, the
higher the �delity. This result doesn�t depend on bath temperature.

� To ensure that adiabatic evolution and dynamical decoupling are compat-
ible, encode into a simple (distance-2) quantum error detection code.
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Scheme for dynamical-decoupling-protected 
universal adiabatic QC 

switch interactions adiabatically, locally



1 2 j+1 n

x xσ σ⊗

jX z zσ σ⊗

jZ

1 ni+1 j+1

x xσ σ⊗

i jX X

z zσ σ⊗

i jZ Z

zB zB zBzB

xB xB xB

Scheme for dynamical-decoupling-protected 
universal adiabatic QC 

switch fields rapidly but globally



Proof Strategy (and talk outline)

Let

�S � distance between desired ground state
and actual system state, at �nal time T

Lemma 1: the distance inequality :

�S �

�decoherence distance� �adiabatic distance�
due to open system + due to closed system
non-unitary evolution| {z }

dD

deviations from adiabaticity| {z }
�ad

and show that both these distances can be made arbitrarily small.

How?



� Lemma 2 � adiabatic distance �ad: For slow enough evolution, can be
made arbitrarily small using analytic interpolation and almost-constant
boundary conditions (or using onlyC2 interpolation provided evolving more
slowly, for the same error)

� Lemma 3 (with the help of Lemmas 4 & 5) � decoherence distance
dD: Can be made arbitrarily small using dynamical decoupling (with �nite-
width pulses and �nite pulse intervals)



Tools: Distance Measure and Operator Norm

Distance between states: trace distance

D[�1; �2] �
1

2
k�1 � �2k1

kAk1 � TrjAj =
X
sing.val.(A);

jAj �
p
AyA

When applied to pure states �i = j iih ij I�ll write D[ 1;  2].

Operator norm

kAk � sup
kj ik=1

q
h jAyAj i

= max sing.val.(A)
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Part 1: Closed System AQC

Dimensionless time:

� = t=T 2 [0; 1]; T = �nal time

True �nal state j (1)i is the solution of the (rescaled) Schrödinger equation:

dj i
d�

= �iTHadj i

Goal of AQC: simultaneously minimize T (n) and the error

�ad � D[ (1); �ad(1)]:

Questions...



� What determines T (n)?

� How to make �ad small?

Textbook criterion:

to have jh (1)j�ad(1)ij2 � 1� �2

need T � 1

�

maxs jhexcited(�)j _Had(�)j�ad(�)ij
min� gap2(�)

:

Gap dependence on n determines T (n). For e¢ cient AQC algorithms:

�(n) � �0n�z; z = dynamical critical exponent

Unfortunately this criterion is not quite right...



Adiabatic Distance for Closed Systems

Depending on the di¤erentiability of Had one can prove di¤erent versions of the adiabatic
theorem (Lemma 2).

� Jansen, Ruskai, & Seiler [J. Math. Phys. 48, 102111 (2007)]. Assume:

� the ground state manifold of Had is gapped.

� Had(�) is twice di¤erentiable on [0; 1]

� _Had(0) = _Had(1) = 0

Then (norm is operator norm):

T � r
k _Hadk2

�3
=) �ad < r�2



DAL, A. Rezakhani, A, Hamma, JMP 50, 102106 (2009):

Assume Had(τ):

F has a non-degenerate and gapped ground state

F is analytic in a strip of width γ around [0,1]

F its first N derivatives vanish at τ = 0, 1



Let r > 1. Then

T =
r


N
k _Hadk2

�3
=) �ad < (N + 1)+1r�N

=) Closed-system AQC is resilient against control errors which preserve gap
but causeHad(s) to deviate from its intended path, as long as �nal Hamiltonian
is correct.

This is a form of inherent fault tolerance to control errors not shared by the
circuit model!

How to accomplish this? Design Hamiltonian according to criteria above.



Part 2: Open System AQC



Joint System-Bath Evolution

H(t) = HS(t)
 IB + IS 
HB| {z }
H0

+HSB;

HS(t) = Had(t)| {z }
implements AQC

+ HC(t)| {z }
implements DD

HSB =
X
�
S� 
B�

[We�ll see later how to enforce [Had(t); HC(t
0)] = 0 8t; t0:]

Joint system-bath propagator and joint state:

U(t) = T exp[�i
Z t
0
H(t0)dt0 ]; �(t) = U(t)�(0)U(t)y

Decoupled joint system-bath state: �0(t) = U0(t)�(0)U0(t)y



Decoupling distance: dD � D[�(T ); �0(T )]

�S � dD + �ad:

Already saw �ad can be made arbitrarily small using analytic interpolation.

Goal: Simultaneously minimize dD using dynamical decoupling.

This is an optimization problem: generically decoherence worsens with increas-
ing T , while closed-system adiabaticity improves.



Dynamical Decoupling (DD) = a sequence of pulses applied to the system,
sometimes forming a group G, designed to reduce the e¤ective system-bath
coupling. Implemented via HC(t).

The sequence ZOO, in increasing order of performance quality:

PDD = a periodic repetition of a basic sequence

RDD = a random pulse sequence

CDD = a concatenated sequence (recursively structured)

UDD = a sequence optimized to cancel pure qubit dephasing with the smallest
possible number of pulses

QDD = a sequence optimized to cancel general qubit decoherence with the
smallest possible number of pulses

Daniel
Oval



“Symmetrizing group”

 

of pulses { gi }

 

and their inverses are applied in series:

Choose the pulses so that: 

For a qubit the Pauli group G={X,Y,Z,I } (π pulses around all three axes) removes an 
arbitrary HSB

 

:

Periodic DD: periodic repetition of the universal DD pulse sequence

(XfX)(YfY)(ZfZ)(IfI) = XfZfXfZf

† 0SB i SB ii
H H g H g≡ =∑(1)

eff Dynamical Decoupling ConditionDynamical Decoupling Condition

exp( )SBiH τ≡ −f

† † †
2 2

†
1 1( ) ( )( ) exp( )i SB iN iNg g g g g g g Hi gτ≈ − ∑f f f

first order Magnus expansionfirst order Magnus expansion

Dynamical Decoupling Theory



DD Parameters:

K = no. of pulses

w = pulse width

� = pulse interval

�c = K(w + �) = cycle time

L = number of PDD cycles

T = L�c = total time

Transform to interaction picture de�ned by Had +HB, i.e.,



~U(t) = U
y
ad(t)
 U

y
B(t)U(t)

The �e¤ective error Hamiltonian�:

~U(t) � e�itHe�(t)

He�(t) can be calculated using Dyson or (better) Magnus expansion.

Note that in decoupled limit:

~U(t)
HSB!0�! UC(t)

t=j� c
= I, i.e., He�(j� c) = 0:

Deviation from ideality at �nal time is thus quanti�ed by

�error phase�: � � TkHe�(T )k

How is the �error phase� related to the �decoupling distance�dD?
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�error phase�: � � TkHe�(T )k

Then distance between desired and actual (Lemma 4):

D[�(T ); �0(T )] = dD � min[1; (e� � 1)=2]
� � if � � 1:

Minimize error phase ) mininize decoupling distance.

Daniel
Typewritten Text
[DAL, P. Zanardi & K. Khodjasteh, Phys. Rev. A 78, 012308 (2008)]
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Error Phase Bound for Periodic DD

[K. Khodjasteh & DAL, Phys. Rev. A 78, 012355 (2008)]

Let

J � kHSBk
� � kHad +HBk

and assume J� c < � (absolute convergence condition of Magnus expansion).

Then (Lemma 5):

�(T ) � JTw

� + w| {z }
error due to

�nite pulse width

+
(JT )2

L
+ JT min[1; (

exp(2��c)� 1
2��c

� 1)]| {z }
error due to terms not removed

by �rst order DD procedure

:

Daniel
Typewritten Text
Use this to bound decoupling distance.

Daniel
Rectangle



Joint AQC-DD Optimization for Local Hamiltonians

For local Hamiltonians Had and HB:

� = kHad +HBk � O(n2)

Recall closed system adiabaticity theorem, ensuring error small if N is large:

T =
r


N
k _Hadk2

�3
=) �ad < (N + 1)+1r�N

� r


N
1

�30
n3z+4 � KL(� + w)

where we used gap condition for e¢ cient AQC algorithms:

�(n) � �0n�z; z = dynamical critical exponent

Given and �xed parameters of the problem are J , �0, and z.
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Need to ensure that each of the terms upper bounding �(T ) vanishes as a
function of n.

This is the case that if pulse interval � and pulse width w scale as

� � n�(3z+3+�1)=�0; w � n�(6z+5+�1+�2)=J

with �1 > 0 and �2 > 0.

For then, using Lemmas 4 & 5 we have proven Lemma 3:

dD . n��2 + (J=�0)2n�(1+�1) + (J=�0)n��1
n!1�! 0

=) Using PDD with properly chosen parameters we can obtain arbitrarily
accurate AQC.

Shortcoming: pulse intervals and widths must shrink with n as a power law...

Could perhaps be remedied by employing concatenated DD.
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In conclusion we�ve (almost) proven the Theorem:

AQC can be performed with a �delity approaching 1 as a power law
in the system size, [using only 2-local Hamiltonians, in the presence of 1-local noise],
assuming access to (dynamical decoupling) pulses whose width and
intervals shrink as a power law in the system size. The latter power
law exponent is linear in the dynamical critical exponent of the closed
system.



Part 3: Seamlessly Combining AQC & DD

Need to show how to achieve �non-interference� condition

[Had(t); HC(t
0)] = 0 8t; t0:

Can be done using encoding.

Example � Stabilizer-normalizer construction:

DD pulses are stabilizer elements. AQC implemented via normalizer elements.



2-Local Universal AQC Resistant Against 1-local Noise

A 2-local Hamiltonian that is universal for AQC (J.D. Biamonte and P.J. Love,
arXiv:0704.1287):

Hunivad (t) =
X

i;�2fx;zg
h�i (t)�

�
i +

X
i;j;�2fx;zg

J�ij(t)�
�
i �

�
j :

1-local noise (linear decoherence model):

H linSB =
X

�=x;y;z

nX
j=1

��j 
B�j



Decoupling group that decouples H linSB =
P
�=x;y;z

Pn
j=1 �

�
j 
B�j :

G = fI;X; Y; Zg; X =
nO
j=1

�xj , etc.

This requires only global pulses.

G is the stabilizer of an [[n; n � 2; 2]] stabilizer code C (n even, x =even
weight binary string):

C = fj xi = (jxi+ jnotxi) =
p
2g

E.g. n = 4:

j00iL = (j0000i+ j1111i) =
p
2; j10iL = (j0011i+ j1100i) =

p
2

j01iL = (j0101i+ j1010i) =
p
2; j11iL = (j1001i+ j0110i) =

p
2



Encoded single-qubit generators for C = fj xi = (jxi+ jnotxi) =
p
2g:

�Xj = �x1�
x
j+1

�Zj = �zj+1�
z
n

Encoded two-qubit generators:

�Xi �Xj = �xi+1�
x
j+1

�Zi �Zj = �zi+1�
z
j+1

Thus universal AQC can be combined with DD using only 2-local �xi �
x
j and

�zi�
z
j interactions over C.



1 2 j+1 n

x xσ σ⊗

jX z zσ σ⊗

jZ

Universality for the [[n,n-2,2]] code

1 ni+1 j+1

x xσ σ⊗

i jX X

z zσ σ⊗

i jZ Z

zB zB zBzB

xB xB xB



Physical examples where X, Z (as pulses for DD) and �xi �
x
j ; �

z
i�
z
j (as Hamil-

tonians for AQC) are available and controllable:

� Capacitively coupled �ux qubits (D.V. Averin and C. Bruder, Phys. Rev.
Lett. 91, 057003 (2003))

� Spin models implemented with polar molecules (A. Micheli, G. Brennen,
and P. Zoller, Nature Phys. 2, 341 (2006))



Conclusions

� Theorem: AQC can be performed with a �delity approaching 1 as a power law in the

system size n, using only 2-local Hamiltonians, in the presence of 1-local noise, assuming

access to (dynamical decoupling) pulses whose width and intervals shrink as a power law

in the system size. The latter power law exponent is linear in the dynamical critical

exponent of the closed system.

� Open questions:

- Can a similar result be shown with n-independent pulse width and interval?

- The distance bound is rather crude because of use of the triangle inequality;

can it be tightened by directly treating adiabatic evolution in the open system?

- A fault-tolerance threshold for AQC?

Daniel
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Odds and Ends



Energy gap stabilization

� Jordan, Farhi & Shor (PRA 74, 052322 (2006)) introduced a scheme that
can protect AQC against 1-local noise using a energy gap against local
excitations.

� Such gaps can be engineered into the Hamiltonians using error detecting
codes

� However, the resulting universal Hamiltonians are at least 4-local

� Their scheme is fully compatible with the DD scheme presented here



   

Control Error

● Suppose final Hamiltonian is slightly off:

● Resulting ground state is:

● Gap against local operators ensures
 denominator 

Daniel
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Why not Use Standard Quantum Error Correction?

Not known how to embed fault-tolerant QEC into adiabatic evolution:

� Requires feedback, which may break adiabaticity (A. Allahverdyan & G.
Mahler, arXiv:0804.1643)

� Embedded FT-QEC circuit will face di¤erent error model than what it was
designed for

We used dynamical decoupling (open-loop, feedback-free) to deal with coupling
to environment, and showed it can deal with the relevant error model.

And, we used an analytic interpolation to boost �delity of closed-system adia-
batic evolution.



Is AQC �Better� than Other QC Paradigms?

No:

� Computationally equivalent to circuit model (Aharonov et al., :quant-ph/0405098;
A. Mizel, DAL, M. Mitchell, PRL 99, 070502 (2007))

� Doesn�t have a fault tolerance theory to back it up

Maybe:

� Perhaps more easily implemented in certain systems, in particular solid state
(quantum dots, superconducting)

� Inherently protected against leakage if kBT is smaller than gap

� Inherently protected against path deformations: only end points matter



Open System Evolution

Consider the uncoupled setting HSB = 0, denoted by the superscript 0.

ideal adiabatic state: �0S;ad(t) = j�ad(t)ih�ad(t)j

actual state under Had(t) : �0S(t) = j (t)ih (t)j
state under HC(t) : �0C(t)

state under HB(t) : �0B(t)

decoupled joint state: �0(t) = �0S(t)
 �0C(t)
 �0B(t)

ideal adiabatic joint state: �0ad(t) � �0S;ad(t)
 �0C(t)
 �0B(t)



Let d (�) denote distances in the joint (system) Hilbert space.

target distance: �S � D[�S(T ); �
0
S;ad(T )]

decoupling distance: dD � D[�(T ); �0(T )]

adiabatic distance: dad � D[�0(T ); �0ad(T )] = �ad



Proof of the Distance Inequality

Partial trace can only decrease distance:

D[�S(T ); �
0
S;ad(T )]| {z }

�S

� D[�(T ); �0ad(T )]

Triangle inequality:

D[�(T ); �0ad(T )] � D[�(T ); �0(T )]| {z }
dD

+D[�0(T ); �0ad(T )]| {z }
�ad

=) desired distance inequality (Lemma 1):

�S � dD + �ad:



Inspired by Hahn spin echo (1950)
π/2-Y π-Z

τ τ

FID – T2
*

Echo
Signal

Pulses

T(|0〉

 

+ |1〉)

(|0〉

 

+ |1〉)

Dynamical Decoupling



Dynamical Decoupling (DD) = a sequence of pulses applied to the system,
sometimes forming a group G, designed to reduce the e¤ective system-bath
coupling. Implemented via HC(t).

The sequence ZOO, in increasing order of performance quality:

PDD = a periodic repetition of a basic sequence

RDD = a random pulse sequence

CDD = a concatenated sequence (recursively structured)

UDD = a sequence optimized to cancel pure qubit dephasing with the smallest
possible number of pulses

QDD = a sequence optimized to cancel general qubit decoherence with the
smallest possible number of pulses



Subsystem Code Construction for [Had(t); HC(t0)] = 0

The decoupling group G induces a decomposition of the system Hilbert spaceHS via its group
algebra CG and its commutant CG0:

HS �=
M
J

CnJ 
 CdJ ;

CG �=
M
J

InJ 
MdJ
; CG0 �=

M
J

MnJ 
 IdJ :

nJ = multiplicity of irrep J ; dJ = dimension

Adiabatic state is encoded into a left factorCJ � CnJ : an nJ -dimensional codeCJ storing
lognJ qubits. AQC is enacted via CG0.

DD pulses act on the right factors, enacted via the elements of CG.

DD pulses project each S� in system-bath Hamiltonian to
L
J �J;�InJ 
 IdJ .

Non-interference condition is satis�ed because [CG;CG0] = 0.
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