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Motivation

What are computers used for?

From talk by F. Verstraete, from a talk by S. Aaronson, from a talk by A. Aspuru-Guzik
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Motivation

What are they computing?

Inputs

A local Hamiltonian H =
∑

k hk :
‖hk‖ = O(1).
hk acts on a few particles, i.e. hk = I ⊗ I ⊗ A⊗ I ⊗ I ⊗ B ⊗ I ⊗ I.

An efficiently specifiable state ρ, e.g.
The Gibbs state ρG(β) = 1

Z e−βH .
The ground state of H, i.e. ρG(∞).
Physically relevance: thermal equilibrium at temperature 1

β .

Output

〈X (t)Y 〉 = Tr{Xe−iHtYeiHtρG(β)} for one-body operators X and Y .
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Motivation

Why is this complicated?

Tr{Xe−iHtYeiHtρ}

Matrix multiplication in vector space H of dimension exponential
with the number of particles.

ρ is not specified in a useful format:
E.g., ρ ∝ e−βH .
Computing its matrix elements ρij is hard.
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Motivation

Some partial solutions

Weakly interacting particles: H = H0 + εV .
Perturbation theory
Hartree-Fock
Density functional theory
etc.

Weakly entangled particles/one dimension
Renormalization methods (NRG, DMRG, MPS, PEPES).
Other variational methods (Laughlin state, Moore-Read).

Unfrustrated bosonic systems
Quantum Monte Carlo e−βH ∼ (I − εH)⊗ (I − εH)⊗ . . .

The interesting physics appears to lie outside the scope covered by
these methods.

Standard model for elementary particle masses
Hubbard model for superconductivity
Coulomb force for molecular binding energies

David Poulin (Sherbrooke) Quantum Metropolis QAMF@UBC’10 7 / 27



Motivation

Some partial solutions

Weakly interacting particles: H = H0 + εV .
Perturbation theory
Hartree-Fock
Density functional theory
etc.

Weakly entangled particles/one dimension
Renormalization methods (NRG, DMRG, MPS, PEPES).
Other variational methods (Laughlin state, Moore-Read).

Unfrustrated bosonic systems
Quantum Monte Carlo e−βH ∼ (I − εH)⊗ (I − εH)⊗ . . .

The interesting physics appears to lie outside the scope covered by
these methods.

Standard model for elementary particle masses
Hubbard model for superconductivity
Coulomb force for molecular binding energies

David Poulin (Sherbrooke) Quantum Metropolis QAMF@UBC’10 7 / 27



Motivation

Some partial solutions

Weakly interacting particles: H = H0 + εV .
Perturbation theory
Hartree-Fock
Density functional theory
etc.

Weakly entangled particles/one dimension
Renormalization methods (NRG, DMRG, MPS, PEPES).
Other variational methods (Laughlin state, Moore-Read).

Unfrustrated bosonic systems
Quantum Monte Carlo e−βH ∼ (I − εH)⊗ (I − εH)⊗ . . .

The interesting physics appears to lie outside the scope covered by
these methods.

Standard model for elementary particle masses
Hubbard model for superconductivity
Coulomb force for molecular binding energies

David Poulin (Sherbrooke) Quantum Metropolis QAMF@UBC’10 7 / 27



Motivation

Some partial solutions

Weakly interacting particles: H = H0 + εV .
Perturbation theory
Hartree-Fock
Density functional theory
etc.

Weakly entangled particles/one dimension
Renormalization methods (NRG, DMRG, MPS, PEPES).
Other variational methods (Laughlin state, Moore-Read).

Unfrustrated bosonic systems
Quantum Monte Carlo e−βH ∼ (I − εH)⊗ (I − εH)⊗ . . .

The interesting physics appears to lie outside the scope covered by
these methods.

Standard model for elementary particle masses
Hubbard model for superconductivity
Coulomb force for molecular binding energies

David Poulin (Sherbrooke) Quantum Metropolis QAMF@UBC’10 7 / 27



Quantum simulators

Outline

1 Motivation

2 Quantum simulators

3 Metropolis algorithm

4 Quantum Metropolis

David Poulin (Sherbrooke) Quantum Metropolis QAMF@UBC’10 8 / 27



Quantum simulators

Original motivation
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Quantum simulators

Solving the dynamics

Lloyd’s idea, ’96

exp(−it
∑

k

hk ) =

[∏

k

exp(−ihk/N)

]N

+O(
1

N2 )

So we can integrate Schrödinger’s equation, solve ρ̇ = −i[H, ρ].

How do we specify the initial conditions ρG(β)?
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Quantum simulators

Approaches to ρG(β)

Simulate evolution of "system+bath" and Metropolis-like.
Conditions for thermalization not reproduced (poorly understood).

Use adiabatic evolution H(t) = (1− t/T )H0 + t/THhard
Must avoid quantum phase transition.
Limited to ground state.

Use Grover-like algorithm to search ground state.
Slow.
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Metropolis algorithm

How is this problem solved for classical systems?

Use Markov Chain Monte Carlo to sample from pG(x) = 1
Z e−βE(x)

The Metropolis algorithm
1 Start from a random configuration x of energy E(x).
2 Generate a new configuration y by changing x at a few locations.
3 Accept / reject new configuration with wxy = min{1,eβ(E(x)−E(y))}:

Accept x ← y with probability wxy .
Reject x ← x with probability 1− wxy .

4 Return to 2.
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Metropolis algorithm

Markov chain

x0
P(x1|x0)−−−−−→ x1

P(x2|x1)−−−−−→ x2 . . . xn−1
P(xn|xn−1)−−−−−−→ xn

Detailed balance condition

The distribution pG(x) = 1
Z e−βH(x) obeys the condition

pG(x)P(y |x) = pG(y)P(x |y)

so it is the fixed point of the Markov chain P(x |y).

Convergence rate

The convergence rate is given by the inverse spectral gap ∆−1 of the
stochastic matrix P(x |y): n ∈ O(∆−1).
∆−1 appears to scale polynomially for problems of interest.
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Quantum Metropolis

Can’t we do the same with quantum systems?

Objective

CPTP map E such that En(ρ0)→ 1
Z e−βH for large enough n.

Straightforward generalization of Metropolis
1 Start from a random energy eigenstate ψi of energy Ei .
2 Generate a new "nearby" energy eigenstate ψj of energy Ej .
3 Accept / reject new configuration with wij = min{1,eβ(Ei−Ej )}:

Accept x ← y with probability wij .
Reject x ← x with probability 1− wij .

4 Return to 2.
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Quantum Metropolis

Problems

We don’t know what the energy eigenstates ψi are.
Use quantum phase estimation.
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Quantum Metropolis

Quantum phase estimation

The ability to simulate the dynamics generated by H can be used to
construct an efficient circuit to (approximately) measure the energy:

|0〉

∑

i

αi|ψi〉 ∑

i

αi|ψi〉 ⊗ |Ei〉
H F

e−iHr

Can use to prepare a random energy eigenstate.
Can use to measure the energy of a given eigenstate.
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Quantum Metropolis

Problems

We don’t know what the energy eigenstates ψi are.
Use quantum phase estimation.

How do we jump to a "nearby" energy eigenstate?

Importance of local moves

If classical configurations x and y differ only at a few positions, then
E(x) ≈ E(y) for any local Hamiltonian H.
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Quantum Metropolis

Not quite there yet...

1 Use QPE to prepare an initial random energy eigenstate ψi .
2 Apply a local random unitary transformation C:

C : |ψi〉 →
∑

j

c i
j |ψj〉 Ei ∼ Ej

3 Use QPE to collapse onto a new energy eigenstate ψj and learn
the associated energy Ej :

QPE :
∑

j

c i
j |ψj〉 →

∑

j

c i
j |ψj〉 ⊗ |Ej〉

|c i
j |

2

−−→ |ψj〉 ⊗ |Ej〉

4 Compute wij = min{1,eβ(Ei−Ej )}
With probability wij , go to step 2.
With probability 1− wij , return computer to state ψi and fo to step 3.
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Quantum Metropolis

Coherent Metropolis move

We combine steps 3&4 coherently (Ei is known):

∑

j

c i
j |ψj〉 ⊗ |Ej〉 →

∑

j

c i
j |ψj〉 ⊗ |Ej〉 ⊗ (

√
wij |0〉+

√
1− wij |1〉)

Measure last qubit:
If the outcome is 0, measure the "energy register" to learn Ej and
return to step 2.
If the outcome is 1, go back to state ψi .

This is already better because only one bit of information was
learned–accepr/reject–so less damage was made to the state.

We can use QPE to determine if we are back in state ψi .
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Quantum Metropolis

Undoing binary measurement, Marriott & Watrous ’05
Ingredients

Initial state |ψ〉.
Circuit for measurement P = {P,P⊥} with P = |ψ〉〈ψ|.
Circuit for a different measurement Q = {Q,Q⊥}.

Goal

Starting from Q⊥|ψ〉, go back to |ψ〉.

Solution
Iterate P and Q measurements until outcome P is obtained.

|ψ〉 = (Q + Q⊥)|ψ〉
=
√

q|φQ〉+
√

1− q|φ⊥Q〉
|ψ⊥〉 =

√
1− q|φQ〉 −

√
q|φ⊥Q〉

|φQ〉 =
√

q|ψ〉+
√

1− q|ψ⊥〉
|φ⊥Q〉 =

√
1− q|ψ〉 − √q|ψ⊥〉
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Quantum Metropolis

Undoing binary measurement, Marriott & Watrous ’05

|ψ〉 =
√

q|φQ〉+
√

1− q|φ⊥Q〉
|ψ⊥〉 =

√
1− q|φQ〉 −

√
q|φ⊥Q〉

|φQ〉 =
√

q|ψ〉+
√

1− q|ψ⊥〉
|φ⊥Q〉 =

√
1− q|ψ〉 − √q|ψ⊥〉

Repeat m times, probability of failure is ∼ p−m.

We can reject the update→ quantum Metropolis step E .

Quantum detailed balance
√

pmpn〈ψi |E(|ψm〉〈ψn|)|ψj〉 =
√

pipj〈ψm|E(|ψi〉〈ψj |)|ψn〉

Hence ρG =
∑

j pj |ψj〉〈ψj | is the fixed point, pj ∝ e−βEj .
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Quantum Metropolis

Inverse gap for XY model at T = 0

The model

H =
∑

k

σx
kσ

x
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The local moves
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Conclusion

Quantum simulations could be the central task for quantum
computers.
They require initializing the quantum computer in physically
relevant state.
The classical problem is solved by the Metropolis algorithm.

Rapidly mixing Markov chain to sample from Gibbs distribution.
Cleaver unphysical moves can be much faster than "system+bath"
simulation.

We have shown how to leverage the full power of the Metropolis
algorithm to the quantum setting.

Brings a solution to the initialization problem.
Validates the quantum computer as a universal simulator.

Markov chain Monte Carlo is the starting point of many classical
algorithms.

New quantum algorithms?
Dissipation driven algorithm: inherently robust...
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