Quantum Metropolis Sampling

David Poulin

Département de Physique Université de Sherbrooke
Joint work with: K. Temme, T. Osborne, K. Vollbrecht, and F. Verstraete

Workshop on quantum Algorithms, Computational Models, and Foundations of Quantum Mechanics
University of British Columbia, Vancouver July 2010

Next's year Canadian Quantum Information Summer School and

Student Conference June 6th to 17th 2011
Jouvence, Parc National du Mont Orford (near Sherbrooke Qc)

Outline

(1) Motivation
(2) Quantum simulators
(3) Metropolis algorithm
(4) Quantum Metropolis

What are computers used for?

From talk by F. Verstraete, from a talk by S. Aaronson, from a talk by A. Aspuru-Guzik

What are they computing?

Inputs

- A local Hamiltonian $H=\sum_{k} h_{k}$:
- $\left\|h_{k}\right\|=\mathcal{O}(1)$.
- h_{k} acts on a few particles, i.e. $h_{k}=I \otimes I \otimes A \otimes I \otimes I \otimes B \otimes I \otimes I$.
- An efficiently specifiable state ρ, e.g.
- The Gibbs state $\rho_{G}(\beta)=\frac{1}{\mathcal{Z}} e^{-\beta H}$.
- The ground state of H, i.e. $\rho_{G}(\infty)$.
- Physically relevance: thermal equilibrium at temperature

Output

$\langle X(t) Y\rangle=\operatorname{Tr}\left\{X e^{-i H t} Y e^{i H t} \rho_{G}(\beta)\right\}$ for one-body operators X and Y

What are they computing?

Inputs

- A local Hamiltonian $H=\sum_{k} h_{k}$:
- $\left\|h_{k}\right\|=\mathcal{O}(1)$.
- h_{k} acts on a few particles, i.e. $h_{k}=I \otimes I \otimes A \otimes I \otimes I \otimes B \otimes I \otimes I$.
- An efficiently specifiable state ρ, e.g.
- The Gibbs state $\rho_{G}(\beta)=\frac{1}{\mathcal{Z}} e^{-\beta H}$.
- The ground state of H, i.e. $\rho_{G}(\infty)$.
- Physically relevance: thermal equilibrium at temperature

Output

$\langle X(t) Y\rangle=\operatorname{Tr}\left\{X e^{-i H t} Y e^{i H t} \rho_{G}(\beta)\right\}$ for one-body operators X and Y.

What are they computing?

Inputs

- A local Hamiltonian $H=\sum_{k} h_{k}$:
- $\left\|h_{k}\right\|=\mathcal{O}(1)$.
- h_{k} acts on a few particles, i.e. $h_{k}=I \otimes I \otimes A \otimes I \otimes I \otimes B \otimes I \otimes I$.
- An efficiently specifiable state ρ, e.g.
- The Gibbs state $\rho_{G}(\beta)=\frac{1}{\mathcal{Z}} e^{-\beta H}$.
- The ground state of H, i.e. $\rho_{G}(\infty)$.
- Physically relevance: thermal equilibrium at temperature $\frac{1}{\beta}$.

Output

$\langle X(t) Y\rangle=\operatorname{Tr}\left\{X e^{-i H t} Y e^{i H t} \rho_{G}(\beta)\right\}$ for one-body operators X and Y.

What are they computing?

Inputs

- A local Hamiltonian $H=\sum_{k} h_{k}$:
- $\left\|h_{k}\right\|=\mathcal{O}(1)$.
- h_{k} acts on a few particles, i.e. $h_{k}=I \otimes I \otimes A \otimes I \otimes I \otimes B \otimes I \otimes I$.
- An efficiently specifiable state ρ, e.g.
- The Gibbs state $\rho_{G}(\beta)=\frac{1}{\mathcal{Z}} e^{-\beta H}$.
- The ground state of H, i.e. $\rho_{G}(\infty)$.
- Physically relevance: thermal equilibrium at temperature $\frac{1}{\beta}$.

Output

$\langle X(t) Y\rangle=\operatorname{Tr}\left\{X e^{-i H t} Y e^{i H t} \rho_{G}(\beta)\right\}$ for one-body operators X and Y.

Why is this complicated?

$$
\operatorname{Tr}\left\{X e^{-i H t} Y e^{i H t} \rho\right\}
$$

- Matrix multiplication in vector space \mathcal{H} of dimension exponential with the number of particles.
- ρ is not specified in a useful format:
- E.g., $\rho \propto e^{-\beta H}$.
- Computing its matrix elements $\rho_{i j}$ is hard.

Why is this complicated?

$$
\operatorname{Tr}\left\{X e^{-i H t} Y e^{i H t} \rho\right\}
$$

- Matrix multiplication in vector space \mathcal{H} of dimension exponential with the number of particles.
- ρ is not specified in a useful format:
- Computing its matrix elements $\rho_{i j}$ is hard.

Why is this complicated?

$$
\operatorname{Tr}\left\{X e^{-i H t} Y e^{i H t} \rho\right\}
$$

- Matrix multiplication in vector space \mathcal{H} of dimension exponential with the number of particles.
- ρ is not specified in a useful format:
- E.g., $\rho \propto e^{-\beta H}$.
- Computing its matrix elements $\rho_{i j}$ is hard.

Some partial solutions

- Weakly interacting particles: $H=H_{0}+\epsilon V$.
- Perturbation theory
- Hartree-Fock
- Density functional theory
- etc.
- Weakly entangled particles/one dimension
- Renormalization methods (NRG, DMRG, MPS, PEPES).
- Other variational methods (Laughlin state, Moore-Read).
- Unfrustrated bosonic systems
- Quantum Monte Carlo $e^{-\beta H} \sim(I-\epsilon H) \otimes(I-\epsilon H)$

> The interesting physics appears to lie outside the scope covered by these methods.

- Standard model for elementary particle masses
- Hubbard model for superconductivity
- Coulomb force for molecular binding energies

Some partial solutions

- Weakly interacting particles: $H=H_{0}+\epsilon V$.
- Perturbation theory
- Hartree-Fock
- Density functional theory
- etc.
- Weakly entangled particles/one dimension
- Renormalization methods (NRG, DMRG, MPS, PEPES).
- Other variational methods (Laughlin state, Moore-Read).
- Unfrustrated bosonic systems
- Quantum Monte Carlo $e^{-\beta H} \sim(I-\epsilon H) \otimes(I-\epsilon H)$

[^0]
Some partial solutions

- Weakly interacting particles: $H=H_{0}+\epsilon V$.
- Perturbation theory
- Hartree-Fock
- Density functional theory
- etc.
- Weakly entangled particles/one dimension
- Renormalization methods (NRG, DMRG, MPS, PEPES).
- Other variational methods (Laughlin state, Moore-Read).
- Unfrustrated bosonic systems
- Quantum Monte Carlo $e^{-\beta H} \sim(I-\epsilon H) \otimes(I-\epsilon H) \otimes \ldots$

[^1]
Some partial solutions

- Weakly interacting particles: $H=H_{0}+\epsilon V$.
- Perturbation theory
- Hartree-Fock
- Density functional theory
- etc.
- Weakly entangled particles/one dimension
- Renormalization methods (NRG, DMRG, MPS, PEPES).
- Other variational methods (Laughlin state, Moore-Read).
- Unfrustrated bosonic systems
- Quantum Monte Carlo $e^{-\beta H} \sim(I-\epsilon H) \otimes(I-\epsilon H) \otimes \ldots$

The interesting physics appears to lie outside the scope covered by these methods.

- Standard model for elementary particle masses
- Hubbard model for superconductivity
- Coulomb force for molecular binding energies

Outline

(2) Quantum simulators
(3) Metropolis algorithm

(4) Quantum Metropolis

Original motivation

Simulating Physics with Computers

Richard P. Feynman

Depariment of Physics, California Institute of Technology, Pasadena, California 91107
Received May 7. 1981

1. INTRODUCTION

On the program it says this is a keynote speech-and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have my own things to say and to talk about and there's no implication that anybody needs to talk about the same thing or anything like it. So what I want to talk about is what Mike Dertouzos suggested that nobody would talk about. I want to talk about the problem of simulating physics with computers and I mean that in a specific way which I am going to explain.

Original motivation

Simulating Physics with Computers

be understood very well in analyzing the situation. And ' ''m not happy with all the analyses that go with just the classical theory, because nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy. Thank you.

1. hivikunucilive

On the program it says this is a keynote speech-and I don't know
${ }_{b}^{n}$ with it, with quantum-mechanical rules). For example, the spin waves in a spin lattice imitating Bose-particles in the field theory. I therefore believe it's true that with a suitable class of quantum machines you could imitate any quantum system, including the physical world. But I don't know whether the general theory of this intersimulation of quantum systems has

Solving the dynamics

Lloyd's idea, '96

$$
\exp \left(-i t \sum_{k} h_{k}\right)=\left[\prod_{k} \exp \left(-i h_{k} / N\right)\right]^{N}+\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

Solving the dynamics

Lloyd's idea, '96

$$
\exp \left(-i t \sum_{k} h_{k}\right)=\left[\prod_{k} \exp \left(-i h_{k} / N\right)\right]^{N}+\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

So we can integrate Schrödinger's equation, solve $\dot{\rho}=-i[H, \rho]$.
How do we specify the initial conditions $\rho_{G}(\beta)$?

Solving the dynamics

Lloyd's idea, '96

$$
\exp \left(-i t \sum_{k} h_{k}\right)=\left[\prod_{k} \exp \left(-i h_{k} / N\right)\right]^{N}+\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

So we can integrate Schrödinger's equation, solve $\dot{\rho}=-i[H, \rho]$.
How do we specify the initial conditions $\rho_{G}(\beta)$?

Solving the dynamics

Lloyd's idea, '96

$$
\exp \left(-i t \sum_{k} h_{k}\right)=\left[\prod_{k} \exp \left(-i h_{k} / N\right)\right]^{N}+\mathcal{O}\left(\frac{1}{N^{2}}\right)
$$

So we can integrate Schrödinger's equation, solve $\dot{\rho}=-i[H, \rho]$. How do we specify the initial conditions $\rho_{G}(\beta)$?

Approaches to $\rho_{\mathrm{G}}(\beta)$

- Simulate evolution of "system+bath"
- Conditions for thermalization not reproduced (poorly understood).
- Use adiabatic evolution $H(t)=(1-t / T) H_{0}+t / T H_{\text {hard }}$
- Must avoid quantum phase transition.
- Limited to ground state.
- Use Grover-like algorithm to search ground state.
- Slow.

Approaches to $\rho_{G}(\beta)$

PHYSICAL REVIEW A, VOLUME 61, 022301
Problem of equilibration and the computation of correlation functions on a quantum computer
Barbara M. Terhal ${ }^{1}$ and David P. DiVincenzo ${ }^{2}$
${ }^{1}$ ITF, Universiteit van Amsterdam,Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands and CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands ${ }^{2}$ IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

- Simulate evolution of "system+bath" and Metropolis-like.
- Conditions for thermalization not reproduced (poorly understood).
- Use adiabatic evolution $H(t)=(1-t / T) H_{0}+t / T H_{\text {hard }}$
- Must avoid quantum phase transition.
- Limited to ground state.
- Use Grover-like algorithm to search ground state.
- Slow.

Approaches to $\rho_{G}(\beta)$

PHYSICAL REVIEW A, VOLUME 61, 022301
Problem of equilibration and the computation of correlation functions on a quantum computer
Barbara M. Terhal ${ }^{1}$ and David P. DiVincenzo ${ }^{2}$
${ }^{1}$ ITF, Universiteit van Amsterdam,Valckenierstraat 65, 1018 XE Amsterdam. The Netherlands and CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands ${ }^{2}$ IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

- Simulate evolution of "system+bath" and Metropolis-like.
- Conditions for thermalization not reproduced (poorly understood).
- Use adiabatic evolution $H(t)=(1-t / T) H_{0}+t / T H_{\text {hard }}$
- Must avoid quantum phase transition.
- Limited to ground state.
- Use Grover-like algorithm to search ground state.
- Slow.

Approaches to $\rho_{G}(\beta)$

PHYSICAL REVIEW A, VOLUME 61, 022301
Problem of equilibration and the computation of correlation functions on a quantum computer

Barba
${ }^{1}$ ITF, Universiteit van Ams and CWI, K ${ }^{2}$ IBM Thomas J. We
(Received 2 November 1998; rev

A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

Edward Farhi, ${ }^{1 *}$ Jeffrey Goldstone, ${ }^{1}$ Sam Gutmann, ${ }^{2}$ Joshua Lapan, ${ }^{3}$ Andrew Lundgren, ${ }^{3}$ Daniel Preda ${ }^{3}$

- Simulate evolution of "system+bath" and Metropolis-like.
- Conditions for thermalization not reproduced (poorly understood).
- Use adiabatic evolution $H(t)=(1-t / T) H_{0}+t / T H_{\text {hard }}$
- Must avoid quantum phase transition.
- Limited to ground state.
- Use Grover-like algorithm to search ground state.
- Slow.

Approaches to $\rho_{G}(\beta)$

PHYSICAL REVIEW A, VOLUME 61, 022301
Problem of equilibration and the computation of correlation functions on a quantum computer

${ }^{1} \text { ITF, Uni }$	A Quantum Adiabatic Evolution Algorithm Applied to Random			
PRL 102, 130503 (2009)	PHYSICAL	REVIEW	LETTERS	

Preparing Ground States of Quantum Many-Body Systems on a Quantum Computer
David Poulin ${ }^{1, *}$ and Pawel Wocjan ${ }^{2}$
${ }^{1}$ Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
${ }^{2}$ School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA (Received 17 September 2008; published 3 April 2009)

- Simulate evolution of "system+bath" and Metropolis-like.
- Conditions for thermalization not reproduced (poorly understood).
- Use adiabatic evolution $H(t)=(1-t / T) H_{0}+t / T H_{\text {hard }}$
- Must avoid quantum phase transition.
- Limited to ground state.
- Use Grover-like algorithm to search ground state.
- Slow.

Approaches to $\rho_{G}(\beta)$

PHYSICAL REVIEW A, VOLUME 61, 022301
Problem of equilibration and the computation of correlation functions on a quantum computer

${ }^{1} \text { ITF, Univ }$	A Quantum Adiabatic Evolution Algorithm Applied to Random			
PRL 102, 130503 (2009)	PHYSICAL	REVIEW	LETTERS	

Preparing Ground States of Quantum Many-Body Systems on a Quantum Computer

PRL 103, $220502(2009)$	PHYSICAL REVIEW

${ }^{2} \mathrm{SCl}$
Sampling from the Thermal Quantum Gibbs State and Evaluating Partition Functions with a Quantum Computer

David Poulin ${ }^{1}$ and Pawel Wocjan ${ }^{2}$
${ }^{1}$ Département de Physique, Université de Sherbrooke, Québec, Canada, JIK $2 R 1$
${ }^{2}$ School of Electrical Engineering and Computer Science, University of Central Florida, Florida 32816-2362, USA (Received 15 June 2009; published 24 November 2009)

- Simulate evolution of "system+bath" and Metropolis-like.
- Conditions for thermalization not reproduced (poorly understood).
- Use adiabatic evolution $H(t)=(1-t / T) H_{0}+t / T H_{\text {hard }}$
- Must avoid quantum phase transition.
- Limited to ground state.
- Use Grover-like algorithm to search ground state.
- Slow.

Outline

(2) Quantum simulators
(3) Metropolis algorithm
(4) Quantum Metropolis

How is this problem solved for classical systems?

Use Markov Chain Monte Carlo to sample from $p_{G}(x)=\frac{1}{z} e^{-\beta E(x)}$

The Metropolis algorithm

- Start from a random configuration x of energy $E(x)$.
(2) Generate a new configuration y by changing x at a few locations.
(3) Accept / reject new configuration with $w_{x y}=\min \left\{1, e^{\beta(E(x)-E(y))}\right\}$:
- Accept $x \leftarrow y$ with probability $w_{x y}$.
- Reject $x \leftarrow x$ with probability $1-w_{x y}$.
(4) Return to 2.

How is this problem solved for classical systems?

Use Markov Chain Monte Carlo to sample from $p_{G}(x)=\frac{1}{\mathcal{Z}} e^{-\beta E(x)}$

The Metropolis algorithm

- Start from a random configuration x of energy $E(x)$.
(2) Generate a new configuration y by changing x at a few locations.
(3) Accept / reject new configuration with $w_{x y}=\min \left\{1, e^{\beta(E(x)-E(y))}\right\}$:
- Accept $x \leftarrow y$ with probability $w_{x y}$.
- Reject $x \leftarrow x$ with probability $1-w_{x y}$.
(a) Return to 2.

How is this problem solved for classical systems?

Use Markov Chain Monte Carlo to sample from $p_{G}(x)=\frac{1}{z} e^{-\beta E(x)}$

THE JOURNAL OF CHEMICAL PHYSICS
VOLUME 21, NUMBER 6
JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

The Metropolis algorithm

Start from a random configuration x of energy $E(x)$(2) Generate a new configuration y by changing x at a few locations.Accept / reject new configuration with $w_{x y}=\min \left\{1, e^{\beta(E(x)-E(y))}\right\}$:

- Accept $x \leftarrow y$ with probability $w_{x y}$.
- Reject $x \leftarrow x$ with probability $1-w_{x y}$.Return to 2.

How is this problem solved for classical systems?

Use Markov Chain Monte Carlo to sample from $p_{G}(x)=\frac{1}{z} e^{-\beta E(x)}$

THE JOURNAL OF CHEMICAL PHYSICS
VOLUME 21, NUMBER 6
JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

The Metropolis algorithm

(1) Start from a random configuration x of energy $E(x)$.
(2) Generate a new configuration y by changing x at a few locations.
(3) Accept / reject new configuration with $w_{x y}=\min \{1$

- Accept $x \leftarrow y$ with probability $w_{x y}$.
- Reject $x \leftarrow x$ with probability $1-w_{x y}$.

How is this problem solved for classical systems?

Use Markov Chain Monte Carlo to sample from $p_{G}(x)=\frac{1}{z} e^{-\beta E(x)}$

THE JOURNAL OF CHEMICAL PHYSICS
VOLUME 21, NUMBER 6
JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico
AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

The Metropolis algorithm

(1) Start from a random configuration x of energy $E(x)$.
(2) Generate a new configuration y by changing x at a few locations.

How is this problem solved for classical systems?

Use Markov Chain Monte Carlo to sample from $p_{G}(x)=\frac{1}{z} e^{-\beta E(x)}$

THE JOURNAL OF CHEMICAL PHYSICS
VOLUME 21, NUMBER 6
JUNE, 1953

Equation of State Calculations by Fast Computing Machines
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico
AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

The Metropolis algorithm

(1) Start from a random configuration x of energy $E(x)$.
(2) Generate a new configuration y by changing x at a few locations.
(3) Accept / reject new configuration with $w_{x y}=\min \left\{1, e^{\beta(E(x)-E(y))}\right\}$:

- Accept $x \leftarrow y$ with probability $w_{x y}$.
- Reject $x \leftarrow x$ with probability $1-w_{x y}$.

How is this problem solved for classical systems?

Use Markov Chain Monte Carlo to sample from $p_{G}(x)=\frac{1}{z} e^{-\beta E(x)}$

```
THE JOURNAL OF CHEMICAL PHYSICS
VOLUME 21, NUMBER 6

Equation of State Calculations by Fast Computing Machines
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico
AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

\section*{The Metropolis algorithm}
(1) Start from a random configuration \(x\) of energy \(E(x)\).
(2) Generate a new configuration \(y\) by changing \(x\) at a few locations.
(3) Accept / reject new configuration with \(w_{x y}=\min \left\{1, e^{\beta(E(x)-E(y))}\right\}\) :
- Accept \(x \leftarrow y\) with probability \(w_{x y}\).
- Reject \(x \leftarrow x\) with probability \(1-w_{x y}\).
(4) Return to 2.

\section*{Markov chain}
\[
x_{0} \xrightarrow{P\left(x_{1} \mid x_{0}\right)} x_{1} \xrightarrow{P\left(x_{2} \mid x_{1}\right)} x_{2} \ldots x_{n-1} \xrightarrow{P\left(x_{n} \mid x_{n-1}\right)} x_{n}
\]

\section*{Detailed balance condition}

The distribution \(\rho_{G}(x)-\frac{1}{2} e^{-\beta H(x)}\) obeys the condition
\[
p_{G}(x) P(y \mid x)=p_{G}(y) P(x \mid y)
\]
so it is the fixed point of the Markov chain \(P(x \mid y)\).

\section*{Convergence rate}

The convergence rate is given by the inverse spectral gap \(\Delta^{-1}\) of the stochastic matrix \(P(x \mid y): n \in \mathcal{O}\left(\Delta^{-1}\right)\).
\(\Delta^{-1}\) appears to scale polynomially for problems of interest.

\section*{Markov chain}
\[
x_{0} \xrightarrow{P\left(x_{1} \mid x_{0}\right)} x_{1} \xrightarrow{P\left(x_{2} \mid x_{1}\right)} x_{2} \ldots x_{n-1} \xrightarrow{P\left(x_{n} \mid x_{n-1}\right)} x_{n}
\]

\section*{Detailed balance condition}

The distribution \(p_{G}(x)=\frac{1}{\mathcal{Z}} e^{-\beta H(x)}\) obeys the condition
\[
p_{G}(x) P(y \mid x)=p_{G}(y) P(x \mid y)
\]
so it is the fixed point of the Markov chain \(P(x \mid y)\).

Convergence rate
The convergence rate is given by the inverse spectral gap \(\Delta^{-1}\) of the stochastic matrix \(P(x \mid y): n \in \mathcal{O}\left(\Delta^{-1}\right)\).
\(\Delta^{-1}\) appears to scale polynomially for problems of interest.

\section*{Markov chain}
\[
x_{0} \xrightarrow{P\left(x_{1} \mid x_{0}\right)} x_{1} \xrightarrow{P\left(x_{2} \mid x_{1}\right)} x_{2} \ldots x_{n-1} \xrightarrow{P\left(x_{n} \mid x_{n-1}\right)} x_{n} \sim \frac{1}{\mathcal{Z}} e^{-\beta H\left(x_{n}\right)}
\]

\section*{Detailed balance condition}

The distribution \(p_{G}(x)=\frac{1}{\mathcal{Z}} e^{-\beta H(x)}\) obeys the condition
\[
p_{G}(x) P(y \mid x)=p_{G}(y) P(x \mid y)
\]
so it is the fixed point of the Markov chain \(P(x \mid y)\).
Convergence rate
The convergence rate is given by the inverse spectral gap \(\Delta^{-1}\) of the stochastic matrix \(P(x \mid y): n \in \mathcal{O}\left(\Delta^{-1}\right)\).
\(\Delta^{-1}\) appears to scale polynomially for problems of interest.

\section*{Markov chain}
\[
x_{0} \xrightarrow{P\left(x_{1} \mid x_{0}\right)} x_{1} \xrightarrow{P\left(x_{2} \mid x_{1}\right)} x_{2} \ldots x_{n-1} \xrightarrow{P\left(x_{n} \mid x_{n-1}\right)} x_{n} \sim \frac{1}{\mathcal{Z}} e^{-\beta H\left(x_{n}\right)}
\]

\section*{Detailed balance condition}

The distribution \(p_{G}(x)=\frac{1}{\mathcal{Z}} e^{-\beta H(x)}\) obeys the condition
\[
p_{G}(x) P(y \mid x)=p_{G}(y) P(x \mid y)
\]
so it is the fixed point of the Markov chain \(P(x \mid y)\).

\section*{Convergence rate}

The convergence rate is given by the inverse spectral gap \(\Delta^{-1}\) of the stochastic matrix \(P(x \mid y): n \in \mathcal{O}\left(\Delta^{-1}\right)\).

\section*{Markov chain}
\[
x_{0} \xrightarrow{P\left(x_{1} \mid x_{0}\right)} x_{1} \xrightarrow{P\left(x_{2} \mid x_{1}\right)} x_{2} \ldots x_{n-1} \xrightarrow{P\left(x_{n} \mid x_{n-1}\right)} x_{n} \sim \frac{1}{\mathcal{Z}} e^{-\beta H\left(x_{n}\right)}
\]

\section*{Detailed balance condition}

The distribution \(p_{G}(x)=\frac{1}{\mathcal{Z}} e^{-\beta H(x)}\) obeys the condition
\[
p_{G}(x) P(y \mid x)=p_{G}(y) P(x \mid y)
\]
so it is the fixed point of the Markov chain \(P(x \mid y)\).

\section*{Convergence rate}

The convergence rate is given by the inverse spectral gap \(\Delta^{-1}\) of the stochastic matrix \(P(x \mid y): n \in \mathcal{O}\left(\Delta^{-1}\right)\).
\(\Delta^{-1}\) appears to scale polynomially for problems of interest.

\section*{Outline}
(2) Quantum simulators
(3) Metropolis algorithm
(4) Quantum Metropolis

\section*{Can't we do the same with quantum systems?}

\section*{Objective \\ CPTP map \(\mathcal{E}\) such that \(\mathcal{E}^{n}\left(\rho_{0}\right) \rightarrow \frac{1}{\mathcal{Z}} e^{-\beta H}\) for large enough \(n\).}

\section*{Straightforward generalization of Metropolis}
(1) Start from a random energy eigenstate \(\psi_{i}\) of energy \(E_{i}\).
(2) Generate a new "nearby" energy eigenstate \(\psi_{j}\) of energy \(E_{j}\).
(3) Accept / reject new configuration with \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\) :
- Accept \(x \leftarrow y\) with probability \(w_{i j}\).
- Reject \(x \leftarrow x\) with probability \(1-w_{i j}\).
(a) Return to 2.

\section*{Can't we do the same with quantum systems?}

\section*{Objective}

CPTP map \(\mathcal{E}\) such that \(\mathcal{E}^{n}\left(\rho_{0}\right) \rightarrow \frac{1}{\mathcal{Z}} e^{-\beta H}\) for large enough \(n\).

\section*{Straightforward generalization of Metropolis}
(1) Start from a random energy eigenstate \(\psi_{i}\) of energy \(E_{i}\).
(2) Generate a new "nearby" energy eigenstate \(\psi_{j}\) of energy \(E_{j}\)
(3) Accept / reject new configuration with \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\)
- Accept \(x \leftarrow y\) with probability \(w_{i j}\)
- Reject \(x \leftarrow x\) with probability \(1-w_{i j}\)
(3) Return to 2.

\section*{Can't we do the same with quantum systems?}

\section*{Objective}

CPTP map \(\mathcal{E}\) such that \(\mathcal{E}^{n}\left(\rho_{0}\right) \rightarrow \frac{1}{\mathcal{Z}} e^{-\beta H}\) for large enough \(n\).

Straightforward generalization of Metropolis
(1) Start from a random energy eigenstate \(\psi_{i}\) of energy \(E_{i}\).
(2) Generate a new "nearby" energy eigenstate \(\psi_{j}\) of energy \(E_{j}\).
(3) Accept / reject new configuration with \(w_{i j}=\min \{1\) - Accept \(x \leftarrow y\) with probability \(w_{i j}\) - Reject \(x \leftarrow x\) with probability \(1-w_{i j}\)
\(\square\)

\section*{Can't we do the same with quantum systems?}

\section*{Objective}

CPTP map \(\mathcal{E}\) such that \(\mathcal{E}^{n}\left(\rho_{0}\right) \rightarrow \frac{1}{\mathcal{Z}} e^{-\beta H}\) for large enough \(n\).

\section*{Straightforward generalization of Metropolis}
(1) Start from a random energy eigenstate \(\psi_{i}\) of energy \(E_{i}\).
(2) Generate a new "nearby" energy eigenstate \(\psi_{j}\) of energy \(E_{j}\).
(8) Accept / reject new configuration with \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\) :
- Accept \(x \leftarrow y\) with probability \(w_{i j}\).
- Reject \(x \leftarrow x\) with probability \(1-w_{i j}\).
(9) Return to 2.

\section*{Can't we do the same with quantum systems?}

\section*{Objective}

CPTP map \(\mathcal{E}\) such that \(\mathcal{E}^{n}\left(\rho_{0}\right) \rightarrow \frac{1}{\mathcal{Z}} e^{-\beta H}\) for large enough \(n\).

\section*{Straightforward generalization of Metropolis}
(1) Start from a random energy eigenstate \(\psi_{i}\) of energy \(E_{i}\).
(2) Generate a new "nearby" energy eigenstate \(\psi_{j}\) of energy \(E_{j}\).
(3) Accept / reject new configuration with \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\) :
- Accept \(x \leftarrow y\) with probability \(w_{i j}\).
- Reject \(x \leftarrow x\) with probability \(1-w_{i j}\).
(9) Return to 2.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.

\section*{Quantum phase estimation}

The ability to simulate the dynamics generated by H can be used to construct an efficient circuit to (approximately) measure the energy:

- Can use to prepare a random energy eigenstate.
- Can use to measure the energy of a given eigenstate.

\section*{Quantum phase estimation}

The ability to simulate the dynamics generated by H can be used to construct an efficient circuit to (approximately) measure the energy:

- Can use to prepare a random energy eigenstate.
- Can use to measure the energy of a given eigenstate.

\section*{Quantum phase estimation}

The ability to simulate the dynamics generated by H can be used to construct an efficient circuit to (approximately) measure the energy:

- Can use to prepare a random energy eigenstate.
- Can use to measure the energy of a given eigenstate.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?
importance of local moves
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

Importance of local moves
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).

\section*{Importance of local moves}


\section*{Importance of local moves}


\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).
- This ensures that the local move has a good chance of being accepted.
- This was a failure in one of the approach of Terhal and DiVincenzo.
- Use random local unitary transformation.
- Measure new state's energy \(\rightarrow\) irreversible process: how to reject?
- Classically, we keep a copy of \(x\) before going to \(y\) : cloning.
- Use measurement that reveals less information.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).
- This ensures that the local move has a good chance of being accepted.
- This was a failure in one of the approach of Terhal and DiVincenzo.
- Use random local unitary transformation.
- Measure new state's energy \(\rightarrow\) irreversible process: how to reject?
- Classically, we keep a copy of \(x\) before going to \(y\) : cloning.
- Use measurement that reveals less information.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).
- This ensures that the local move has a good chance of being accepted.
- This was a failure in one of the approach of Terhal and DiVincenzo.
- Use random local unitary transformation.
- Measure new state's energy \(\rightarrow\) irreversible process: how to reject?
- Classically, we keep a copy of \(x\) before going to \(y\) : cloning.
- Use measurement that reveals less information.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).
- This ensures that the local move has a good chance of being accepted.
- This was a failure in one of the approach of Terhal and DiVincenzo.
- Use random local unitary transformation.
- Measure new state's energy \(\rightarrow\) irreversible process: how to reject?
- Classically, we keep a copy of \(x\) before going to \(y\) : cloning.
- Use measurement that reveals less information.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).
- This ensures that the local move has a good chance of being accepted.
- This was a failure in one of the approach of Terhal and DiVincenzo.
- Use random local unitary transformation.
- Measure new state's energy \(\rightarrow\) irreversible process: how to reject?
- Classically, we keep a copy of \(x\) before going to \(y\) : cloning.
- Use measurement that reveals less information.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).
- This ensures that the local move has a good chance of being accepted.
- This was a failure in one of the approach of Terhal and DiVincenzo.
- Use random local unitary transformation.
- Measure new state's energy \(\rightarrow\) irreversible process: how to reject?
- Classically, we keep a copy of \(x\) before going to \(y\) : cloning.
- Use measurement that reveals less information.

\section*{Problems}
- We don't know what the energy eigenstates \(\psi_{i}\) are.
- Use quantum phase estimation.
- How do we jump to a "nearby" energy eigenstate?

\section*{Importance of local moves}
- If classical configurations \(x\) and \(y\) differ only at a few positions, then \(E(x) \approx E(y)\) for any local Hamiltonian \(H\).
- This ensures that the local move has a good chance of being accepted.
- This was a failure in one of the approach of Terhal and DiVincenzo.
- Use random local unitary transformation.
- Measure new state's energy \(\rightarrow\) irreversible process: how to reject?
- Classically, we keep a copy of \(x\) before going to \(y\) : cloning.
- Use measurement that reveals less information.

\section*{Not quite there yet...}
(1) Use QPE to prepare an initial random energy eigenstate \(\psi_{i}\).
(2) Apply a local random unitary transformation C:

(3) Use QPE to collapse onto a new energy eigenstate \(\psi_{j}\) and learn the associated energy \(E_{j}\) :

(4) Compute \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\)
- With probability \(w_{i j}\), go to step 2.
- With probability \(1-w_{i j}\), return computer to state \(\psi_{i}\) and fo to step 3 .

\section*{Not quite there yet...}
(1) Use QPE to prepare an initial random energy eigenstate \(\psi_{i}\).
(2) Apply a local random unitary transformation \(C\) :
\[
C:\left|\psi_{i}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \quad E_{i} \sim E_{j}
\]
(3) Use QPE to collapse onto a new energy eigenstate \(\psi_{j}\) and learn the associated energy \(E_{j}\) :

(4) Compute \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\)
- With probability \(w_{i j}\), go to step 2.
- With probability \(1-w_{i j}\), return computer to state \(\psi_{i}\) and fo to step 3.

\section*{Not quite there yet...}
(1) Use QPE to prepare an initial random energy eigenstate \(\psi_{i}\).
(2) Apply a local random unitary transformation \(C\) :
\[
C:\left|\psi_{i}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \quad E_{i} \sim E_{j}
\]
( Use QPE to collapse onto a new energy eigenstate \(\psi_{j}\) and learn the associated energy \(E_{j}\) :
\[
Q P E: \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \xrightarrow{\left|c_{j}^{j}\right|^{2}}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle
\]
( Compute \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\)
- With probability \(w_{i j}\), go to step 2.
- With probability \(1-w_{i j}\), return computer to state \(\psi_{i}\) and fo to step 3.

\section*{Not quite there yet...}
(1) Use QPE to prepare an initial random energy eigenstate \(\psi_{i}\).
(2) Apply a local random unitary transformation \(C\) :
\[
C:\left|\psi_{i}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \quad E_{i} \sim E_{j}
\]
(3) Use QPE to collapse onto a new energy eigenstate \(\psi_{j}\) and learn the associated energy \(E_{j}\) :
\[
Q P E: \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \xrightarrow{\left|c_{j}^{j}\right|^{2}}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle
\]
(1) Compute \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\)
- With probability \(w_{i j}\), go to step 2.
- With probability \(1-w_{i j}\), return computer to state \(\psi_{i}\) and fo to step 3.

\section*{Not quite there yet...}
(1) Use QPE to prepare an initial random energy eigenstate \(\psi_{i}\).
(2) Apply a local random unitary transformation \(C\) :
\[
C:\left|\psi_{i}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \quad E_{i} \sim E_{j}
\]
(3) Use QPE to collapse onto a new energy eigenstate \(\psi_{j}\) and learn the associated energy \(E_{j}\) :
\[
Q P E: \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \xrightarrow{\left|c_{j}^{j}\right|^{2}}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle
\]
(1) Compute \(w_{i j}=\min \left\{1, e^{\beta\left(E_{i}-E_{j}\right)}\right\}\)
- With probability \(w_{i j}\), go to step 2.
- With probability \(1-w_{i j}\), return computer to state \(\psi_{i}\) and fo to step 3.

\section*{Coherent Metropolis move}

We combine steps \(3 \& 4\) coherently ( \(E_{i}\) is known):
\[
\sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \otimes\left(\sqrt{w_{i j}}|0\rangle+\sqrt{1-w_{i j}}|1\rangle\right)
\]

\section*{Measure last qubit:}
- If the outcome is 0 , measure the "energy register" to learn \(E_{j}\) and return to step 2.
- If the outcome is 1 , go back to state \(\psi_{1}\).

> This is already better because only one bit of information was learned-accepr/reject-so less damage was made to the state.

\section*{We can use QPE to determine if we are back in state \(\psi_{i}\).}

\section*{Coherent Metropolis move}

We combine steps \(3 \& 4\) coherently ( \(E_{i}\) is known):
\[
\sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \otimes\left(\sqrt{w_{i j}}|0\rangle+\sqrt{1-w_{i j}}|1\rangle\right)
\]

Measure last qubit:
- If the outcome is 0, measure the "energy register" to learn \(E_{j}\) and return to step 2.
- If the outcome is 1 , go back to state \(\psi_{i}\)

This is already better because only one bit of information was learned-accepr/reject-so less damage was made to the state.

\section*{We can use QPE to determine if we are back in state \(\psi_{i}\).}

\section*{Coherent Metropolis move}

We combine steps \(3 \& 4\) coherently ( \(E_{i}\) is known):
\[
\sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \otimes\left(\sqrt{w_{i j}}|0\rangle+\sqrt{1-w_{i j}}|1\rangle\right)
\]

Measure last qubit:
- If the outcome is 0 , measure the "energy register" to learn \(E_{j}\) and return to step 2.
\[
\text { - If the outcome is } 1 \text {, go back to state } y
\]

> This is already better because only one bit of information was learned-accepr/reject-so less damage was made to the state.

\section*{We can use QPE to determine if we are back in state}

\section*{Coherent Metropolis move}

We combine steps \(3 \& 4\) coherently ( \(E_{i}\) is known):
\[
\sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \otimes\left(\sqrt{w_{i j}}|0\rangle+\sqrt{1-w_{i j}}|1\rangle\right)
\]

Measure last qubit:
- If the outcome is 0 , measure the "energy register" to learn \(E_{j}\) and return to step 2.
- If the outcome is 1 , go back to state \(\psi_{i}\).

> This is already better because only one bit of information was learned-accepr/reject-so less damage was made to the state.

\section*{We can use QPE to determine if we are back in state}

\section*{Coherent Metropolis move}

We combine steps \(3 \& 4\) coherently ( \(E_{i}\) is known):
\[
\sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \otimes\left(\sqrt{w_{i j}}|0\rangle+\sqrt{1-w_{i j}}|1\rangle\right)
\]

Measure last qubit:
- If the outcome is 0 , measure the "energy register" to learn \(E_{j}\) and return to step 2.
- If the outcome is 1 , go back to state \(\psi_{i}\).

This is already better because only one bit of information was learned-accepr/reject-so less damage was made to the state.

\footnotetext{
We can use QPE to determine if we are back in state \(\psi\)
}

\section*{Coherent Metropolis move}

We combine steps \(3 \& 4\) coherently ( \(E_{i}\) is known):
\[
\sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \rightarrow \sum_{j} c_{j}^{i}\left|\psi_{j}\right\rangle \otimes\left|E_{j}\right\rangle \otimes\left(\sqrt{w_{i j}}|0\rangle+\sqrt{1-w_{i j}}|1\rangle\right)
\]

Measure last qubit:
- If the outcome is 0 , measure the "energy register" to learn \(E_{j}\) and return to step 2.
- If the outcome is 1 , go back to state \(\psi_{i}\).

This is already better because only one bit of information was learned-accepr/reject-so less damage was made to the state.

We can use QPE to determine if we are back in state \(\psi_{i}\).

\section*{Undoing binary measurement, Marriott \& Watrous '05}

\section*{Ingredients}
- Initial state
- Circuit for measurement \(\mathcal{P}=\left\{P, P^{\perp}\right\}\) with \(P=|\psi\rangle\langle\psi|\)
- Circuit for a different measurement \(\mathcal{Q}=\left\{Q, Q^{\perp}\right\}\).

\section*{Goal}

Starting from \(Q^{-}|\psi\rangle\), go back to

\section*{Solution}

Iterate \(\mathcal{P}\) and \(\mathcal{Q}\) measurements until outcome \(P\) is obtained.

\[
\left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{Q}^{\perp}\right\rangle
\]

\section*{Undoing binary measurement, Marriott \& Watrous '05}

Ingredients
- Initial state \(|\psi\rangle\).
- Circuit for measurement \(\mathcal{P}=\left\{P, P^{\perp}\right\}\) with \(P=|\psi\rangle\langle\psi|\).
- Circuit for a different measurement \(\mathcal{Q}=\left\{Q, Q^{\perp}\right\}\).

\section*{Goal \\ Starting from \(Q^{\perp}|\psi\rangle\), go back to}

\section*{Solution}

Iterate \(\mathcal{P}\) and \(Q\) measurements until outcome \(P\) is obtained.


\section*{Undoing binary measurement, Marriott \& Watrous '05}

Ingredients
- Initial state \(|\psi\rangle\).
- Circuit for measurement \(\mathcal{P}=\left\{P, P^{\perp}\right\}\) with \(P=|\psi\rangle\langle\psi|\).
- Circuit for a different measurement \(\mathcal{Q}=\left\{Q, Q^{\perp}\right\}\).

\section*{Goal}

Starting from \(Q^{\perp}|\psi\rangle\), go back to \(|\psi\rangle\).

\section*{Solution}

Iterate \(\mathcal{P}\) and \(Q\) measurements until outcome \(P\) is obtained


\section*{Undoing binary measurement, Marriott \& Watrous '05}

Ingredients
- Initial state \(|\psi\rangle\).
- Circuit for measurement \(\mathcal{P}=\left\{P, P^{\perp}\right\}\) with \(P=|\psi\rangle\langle\psi|\).
- Circuit for a different measurement \(\mathcal{Q}=\left\{Q, Q^{\perp}\right\}\).

\section*{Goal}

Starting from \(Q^{\perp}|\psi\rangle\), go back to \(|\psi\rangle\).

\section*{Solution}

Iterate \(\mathcal{P}\) and \(\mathcal{Q}\) measurements until outcome \(P\) is obtained.


\section*{Undoing binary measurement, Marriott \& Watrous '05}

\section*{Ingredients}
- Initial state \(|\psi\rangle\).
- Circuit for measurement \(\mathcal{P}=\left\{P, P^{\perp}\right\}\) with \(P=|\psi\rangle\langle\psi|\).
- Circuit for a different measurement \(\mathcal{Q}=\left\{Q, Q^{\perp}\right\}\).

\section*{Goal}

Starting from \(Q^{\perp}|\psi\rangle\), go back to \(|\psi\rangle\).

\section*{Solution}

Iterate \(\mathcal{P}\) and \(\mathcal{Q}\) measurements until outcome \(P\) is obtained.
\[
\begin{aligned}
|\psi\rangle & =\left(Q+Q^{\perp}\right)|\psi\rangle \\
& =\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{Q}^{\perp}\right\rangle
\end{aligned}
\]

\section*{Undoing binary measurement, Marriott \& Watrous '05}

\section*{Ingredients}
- Initial state \(|\psi\rangle\).
- Circuit for measurement \(\mathcal{P}=\left\{P, P^{\perp}\right\}\) with \(P=|\psi\rangle\langle\psi|\).
- Circuit for a different measurement \(\mathcal{Q}=\left\{Q, Q^{\perp}\right\}\).

\section*{Goal}

Starting from \(Q^{\perp}|\psi\rangle\), go back to \(|\psi\rangle\).

\section*{Solution}

Iterate \(\mathcal{P}\) and \(\mathcal{Q}\) measurements until outcome \(P\) is obtained.
\[
\begin{aligned}
|\psi\rangle & =\left(Q+Q^{\perp}\right)|\psi\rangle \\
& =\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{Q}^{\perp}\right\rangle \\
\left|\psi^{\perp}\right\rangle & =\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\frac{\perp}{Q}}^{\perp}\right\rangle
\end{aligned}
\]

\section*{Undoing binary measurement, Marriott \& Watrous '05}

\section*{Ingredients}
- Initial state \(|\psi\rangle\).
- Circuit for measurement \(\mathcal{P}=\left\{P, P^{\perp}\right\}\) with \(P=|\psi\rangle\langle\psi|\).
- Circuit for a different measurement \(\mathcal{Q}=\left\{Q, Q^{\perp}\right\}\).

\section*{Goal}

Starting from \(Q^{\perp}|\psi\rangle\), go back to \(|\psi\rangle\).

\section*{Solution}

Iterate \(\mathcal{P}\) and \(\mathcal{Q}\) measurements until outcome \(P\) is obtained.
\[
\begin{array}{rl|l|}
|\psi\rangle & =\left(Q+Q^{\perp}\right)|\psi\rangle & \begin{array}{l}
\left|\phi_{Q}\right\rangle
\end{array}=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& =\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{Q}^{\perp}\right\rangle & \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle
\end{array}
\]
\[
\left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{Q}^{\perp}\right\rangle
\]

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{Q}^{\perp}\right\rangle| | \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\vec{Q}}^{\perp}\right\rangle \\
& \left|\phi_{\hat{Q}}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle
\end{aligned}
\]

Repeat \(m\) times, probability of failure is \(\sim p^{-m}\).
We can reject the undate \(\rightarrow\) quantum Metronolis step \(\mathcal{E}\).


Hence \(\rho_{G}=\sum_{j} \rho_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\) is the fixed point, \(p_{j} \propto e^{-\beta E_{j}}\)

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle| | \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\hat{Q}}^{\perp}\right\rangle \\
& \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle
\end{aligned}
\]
\(\left\lvert\, \phi_{Q}^{\left.\frac{1}{Q}\right\rangle}\right.\)
Repeat \(m\) times, probability of failure is \(\sim p^{-m}\)
We can reject the update \(\rightarrow\) quantum Metropolis step \(\mathcal{E}\).
Quantum detalled balance


Hence \(\rho_{G}=\sum_{j} \rho_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\) is the fixed point, \(p_{j} \propto e^{-\beta E_{j}}\)

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle| | \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle \\
& \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle
\end{aligned}
\]
\(\mathcal{P}\)


Repeat \(m\) times, probability of failure is \(\sim p^{-m}\).
We can reject the update \(\rightarrow\) quantum Metropolis step \(\mathcal{E}\).

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{Q}^{\perp}\right\rangle| | \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle \\
& \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle
\end{aligned}
\]

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.\begin{array}{rl}
|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle \\
\left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\bar{Q}}\right\rangle
\end{array}\right\rangle \begin{array}{l}
\left|\phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
\left.\left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle}\right\rangle
\end{array} \\
& \left.\begin{array}{rl}
|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle \\
\left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\bar{Q}}\right\rangle
\end{array}\right\rangle \begin{array}{l}
\left|\phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
\left.\left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle}\right\rangle
\end{array} \\
& \left.\begin{array}{rl}
|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle \\
\left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\bar{Q}}\right\rangle
\end{array}\right\rangle \begin{array}{l}
\left|\phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
\left.\left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle}\right\rangle
\end{array} \\
& \begin{array}{lll}
\mathcal{P} & \mathcal{Q} & \mathcal{P}
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { We can reject the update } \rightarrow \text { quantum Metropolis step } \mathcal{E} \text {. }
\end{aligned}
\]

\section*{Quantum detailed balance}
\(\square\)
Hence \(\rho_{G}=\sum_{i} \rho_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\) is the fixed point, \(\rho_{j} \propto e^{-\beta E_{j}}\)

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\left.\begin{aligned}
|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{Q}^{\perp}\right\rangle \\
\left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{Q}^{\perp}\right\rangle
\end{aligned} \right\rvert\, \begin{aligned}
& \left|\phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\phi_{\hat{Q}}^{\dagger}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle
\end{aligned}
\]
\(\mathcal{Q}\)

Repeat \(m\) times, probability of failure is \(\sim p^{-m}\).
We can reject the update \(\rightarrow\) quantum Metropolis step \(\mathcal{E}\).

\section*{Quantum detailed balance}
\(\square\)
Hence \(\rho_{G}=\sum_{j} O_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\) is the fixed point, \(\rho_{j} \propto e^{-\beta E_{j}}\)

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{Q}^{\perp}\right\rangle| | \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle \\
& \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle \\
& \mathcal{Q} \quad \mathcal{P}
\end{aligned}
\]

Repeat \(m\) times, probability of failure is \(\sim p^{-m}\)
We can reject the update \(\rightarrow\) quantum Metropolis step \(\mathcal{E}\).

\section*{Quantum detailed balance}
\(\square\)
Hence \(\rho_{G}=\sum_{i} P_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\) is the fixed point, \(\rho_{j} \propto e^{-\beta E_{j}}\)

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle| | \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{Q}^{\perp}\right\rangle \\
& \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle \\
& \begin{array}{lll}
\mathcal{Q} & \mathcal{P} & \mathcal{Q}
\end{array}
\end{aligned}
\]

Repeat \(m\) times, probability of failure is \(\sim p^{-m}\)
We can reject the update \(\rightarrow\) quantum Metropolis step \(\mathcal{E}\).

\section*{Quantum-detailed balance}
\(\square\)
Hence \(\rho_{G}=\sum_{j} D_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\) is the fixed point, \(\rho_{j} \propto e^{-\beta E_{j}}\)

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle| | \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{Q}^{\perp}\right\rangle \\
& \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle \\
& \begin{array}{lll}
\mathcal{Q} & \mathcal{P} & \mathcal{Q}
\end{array}
\end{aligned}
\]

Repeat \(m\) times, probability of failure is \(\sim p^{-m}\).
\[
\text { We can reject the update } \rightarrow \text { quantum Metropolis step } \mathcal{E} \text {. }
\]

\section*{Quantum detailed balance}

Hence \(\rho_{G}=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\) is the fixed point, \(p_{j} \propto e^{-\beta E_{j}}\)

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{Q}^{\perp}\right\rangle|\quad| \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{Q}^{\perp}\right\rangle \\
& \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle \\
& \begin{array}{lll}
\mathcal{Q} & \mathcal{P} & \mathcal{Q}
\end{array}
\end{aligned}
\]

Repeat \(m\) times, probability of failure is \(\sim p^{-m}\).
We can reject the update \(\rightarrow\) quantum Metropolis step \(\mathcal{E}\).

\section*{Quantum detailed balance}
\(\square\)
Hence \(\rho_{G}=\sum_{i} p_{i}\left|w_{i}\right\rangle v_{i} \mid\) is the fixed point, \(p_{i}\)

\section*{Undoing binary measurement, Marriott \& Watrous '05}
\[
\begin{aligned}
& \left.|\psi\rangle=\sqrt{q}\left|\phi_{Q}\right\rangle+\sqrt{1-q}\left|\phi_{\bar{Q}}^{\perp}\right\rangle| | \phi_{Q}\right\rangle=\sqrt{q}|\psi\rangle+\sqrt{1-q}\left|\psi^{\perp}\right\rangle \\
& \left|\psi^{\perp}\right\rangle=\sqrt{1-q}\left|\phi_{Q}\right\rangle-\sqrt{q}\left|\phi_{Q}^{\perp}\right\rangle \\
& \left|\phi_{Q}^{\perp}\right\rangle=\sqrt{1-q}|\psi\rangle-\sqrt{q}\left|\psi^{\perp}\right\rangle \\
& \begin{array}{lll}
\mathcal{Q} & \mathcal{P} & \mathcal{Q}
\end{array}
\end{aligned}
\]

Repeat \(m\) times, probability of failure is \(\sim p^{-m}\).
We can reject the update \(\rightarrow\) quantum Metropolis step \(\mathcal{E}\).

\section*{Quantum detailed balance}
\[
\sqrt{p_{m} p_{n}}\left\langle\psi_{i}\right| \mathcal{E}\left(\left|\psi_{m}\right\rangle\left\langle\psi_{n}\right|\right)\left|\psi_{j}\right\rangle=\sqrt{p_{i} p_{j}}\left\langle\psi_{m}\right| \mathcal{E}\left(\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|\right)\left|\psi_{n}\right\rangle
\]

Hence \(\rho_{G}=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\) is the fixed point, \(p_{j} \propto e^{-\beta E_{j}}\).

\section*{Inverse gap for XY model at \(T=0\)}

\section*{The model}
\[
H=\sum_{k} \sigma_{k}^{x} \sigma_{k+1}^{x}+\sigma_{k}^{y} \sigma_{k+1}^{y}+\boldsymbol{g} \sigma_{k}^{z}
\]

\section*{The local moves}
\[
C_{k}=\left(\bigotimes_{j=1}^{k-1} \sigma_{j}^{Z}\right) \sigma_{k}^{x}
\]

- Quantum simulations could be the central task for quantum computers.
- They require initializing the quantum computer in physically relevant state.
- The classical problem is solved by the Metropolis algorithm.
- Rapidly mixing Markov chain to sample from Gibbs distribution.
- Cleaver unphysical moves can be much faster than "system+bath" simulation.
- We have shown how to leverage the full power of the Metropolis algorithm to the quantum setting.
- Brings a solution to the initialization problem.
- Validates the quantum computer as a universal simulator.
- Markov chain Monte Carlo is the starting point of many classical algorithms.
- New quantum algorithms?
- Dissipation driven algorithm: inherently robust...
- Quantum simulations could be the central task for quantum computers.
- They require initializing the quantum computer in physically relevant state.
- The classical problem is solved by the Metropolis algorithm.
- Rapidly mixing Markov chain to sample from Gibbs distribution.
- Cleaver unphysical moves can be much faster than "system+bath" simulation.
- We have shown how to leverage the full power of the Metropolis algorithm to the quantum setting.
- Brings a solution to the initialization problem.
- Validates the quantum computer as a universal simulator.
- Markov chain Monte Carlo is the starting noint of many classical algorithms.
- New quantum algorithms?
- Dissipation driven algorithm: inherently robust...
- Quantum simulations could be the central task for quantum computers.
- They require initializing the quantum computer in physically relevant state.
- The classical problem is solved by the Metropolis algorithm.
- Rapidly mixing Markov chain to sample from Gibbs distribution.
- Cleaver unphysical moves can be much faster than "system+bath" simulation.
- We have shown how to leverage the full power of the Metropolis algorithm to the quantum setting.
- Brings a solution to the initialization problem.
- Validates the quantum computer as a universal simulator.
- Markov chain Monte Carlo is the starting point of many classical algorithms.
- New quantum algorithms?
- Dissipation driven algorithm: inherently robust..
- Quantum simulations could be the central task for quantum computers.
- They require initializing the quantum computer in physically relevant state.
- The classical problem is solved by the Metropolis algorithm.
- Rapidly mixing Markov chain to sample from Gibbs distribution.
- Cleaver unphysical moves can be much faster than "system+bath" simulation.
- We have shown how to leverage the full power of the Metropolis algorithm to the quantum setting.
- Brings a solution to the initialization problem.
- Validates the quantum computer as a universal simulator.
- Markov chain Monte Carlo is the starting point of many classical algorithms.
- New quantum algorithms?
- Dissipation driven algorithm: inherently robust.
- Quantum simulations could be the central task for quantum computers.
- They require initializing the quantum computer in physically relevant state.
- The classical problem is solved by the Metropolis algorithm.
- Rapidly mixing Markov chain to sample from Gibbs distribution.
- Cleaver unphysical moves can be much faster than "system+bath" simulation.
- We have shown how to leverage the full power of the Metropolis algorithm to the quantum setting.
- Brings a solution to the initialization problem.
- Validates the quantum computer as a universal simulator.
- Markov chain Monte Carlo is the starting point of many classical algorithms.
- New quantum algorithms?
- Dissipation driven algorithm: inherently robust...```


[^0]:    The interesting physics appears to lie outside the scope covered by these methods.

    - Standard model for elementary particle masses
    - Hubbard model for superconductivity
    - Coulomh force for molecular hinding energies

[^1]:    The interesting physics appears to lie outside the scope covered by these methods.

    - Standard model for elementary particle masses
    - Hubbard model for superconductivity
    - Coulomb force for molecular hinding energies

