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• Further developments
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Security of government information, our credit card 
information, emails, …

RSA encryption: 
an encrypted message can be decipher only by 
knowing the factors of a given large number N

Our security is based on the actual impossibility 
of factoring large numbers in a reasonable time

Why factoring large numbers 
is important?



Why factoring large numbers is difficult? 

Determination of the factors of a large number N 
by dividing N for each trial factor l

In the worst case we need to try 
each trial factor l from 1 to  N

A lot of division operations for large numbers, 
costly processes for a digital computer

:divisionsN

1010 years (~ age of the universe) necessary to 
factor a 100-digit number ( ~333 bits)!



Factorization and the hyperbolic function
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Towards a complete knowledge 
of the hyperbolic function

� Number theory: 

Read-out of the hyperbolic function by
exploiting the periodicity of continuous  
truncated Gauss sums (CTGS) 

� Physics:  

Interference as a tool to measure such a  
periodicity



Towards an analogue algorithm 
for factorization

Shor’s idea: factorization of N by periodicity              
measurement of the function 
gN(j) = a j mod N

If yes, is the periodicity of such a function 
physically measurable 

with an analogue computer?

Is there a periodic “factoring” 
function other than Shor’s function?

15 is the largest number factored!



Continuous Truncated Gauss Sum (CTGS) function

N = 331 × 337

Factors ξ = 331, 337 Interference Maxima

Non factors  ξ = 332,…,336 Non maxima

Factoring numbers by measuring 
the periodicity of the CTGS function!



Optical computation: basic idea

Polychromatic waves of optical phases 
λ
x

x = length travelled by the waves 
λ =  continuous values of the wavelengths

x ≡ N nm
λ ≡ ξ nm ξλ

Nx
≡

Nature makes division for us!



Connection between Physics and Number Theory

Optical computation:
“factoring” optical interference

x ≡ N nm
λ ≡ ξ nm

The factors of N are the integer wavelengths 
corresponding to maxima

� M optical paths xm ≡ (m-1)2 x
with m=1,2,…,M

� Polychromatic source

ξλ
Nx

≡



Optical computer

Polycromatic source: 
all integer wavelengths- trial factors at the same t ime

xm ≡ xr +(m-1)2 x  

x = N nm
λ ≡ ξ nm

m=1,2,3

M = 3 N=p q

Normalized interference spectrum:



CCD camera :
2048 pixels
resolution 0.006 nm

Picture of the optical computer

Spectrometer:
resolution 0.01 nm

Step motors:
step 17.821nm
range 50 mm

Piezoelectric translators:
step 10 nm
range 20 µm



Experiment for x=207911 nm=451×461nm

M=3 interfering terms 



Factoring several numbers 
with the same analogue function 

λ ≡ (ξN/N)  x

xm≡ (m-1)2 x
m=1,2,…,M

Several N 
encoded by 
rescaling 
the wavelengths N

m Nmx

ξλ

2)1( −≡

M  optical paths 

The ratios N/ ξN are  stored for several numbers N
at the same time!



ξN ≡ N λ (1/x)

ξN’ ≡ N’ λ (1/x)

Physical computability 
of the continuous Gauss sum method!

Experiment for x = 523426.8 nm



Mehring et al., PRL 98,120502 (2007); Gilowsky et al., PRL 100, 030201 (2008);
Bigourd et al., PRL 100, 030202 (2008); Sadgrove et al., PRL 101, 180502 (2008)                                 

CTGS method:
�The wave nature of light performs the divisions N/l  

�Periodicity measurement: parallel experimental evaluation 
of the CTGS function for trial factors of several in tegers N

�Ratio N/l pre-calculated before the experiment is run
Jones, Phys. Lett. A  372, 5758 (2008)

�No periodicity measurement: independent experimental   
runs for each trial factor 

Prior art: Discrete Gauss sums



If the factors of N are outside of such a range…

We can vary x to cover all the trial factors in the  range: 

Nξ <≤ N3

For a fixed unit of displacement x:

Interval of trial factors:

Scaling property:

CTGS optical algorithm 



Number n of interferograms:

x=x i with i=0,1,…,n-1

c=2 in the visible range:
400nm≤ λ ≤ 800nm

CTGS optical algorithm 

Parameter x 
not fixed anymore!

Visible range:
400nm=λmin≤ λ ≤ λmax =800nm



Example for N=55 Nξ <≤ N3

5 is a factor!

λ
0

N,0 x

N
ξ =



11 is a factor!

Example for N=55 Nξ <≤ N3

λ
1

N,1 x

N
ξ =



CTGS analogue algorithm

Algorithm principle: 

� Measurement of the periodicity  of the 
CTGS “factoring” function 

(connection with Shor’s method)

� Factors of several numbers 
by rescaling the measured periodicity 



CTGS analogue algorithm
Optical implementation:   

� Optical computer able to physically compute 
the  CTGS algorithm

� Factors of two seven-digit numbers 
exploiting only three interfering paths

(pending patent)

� Generalization to 
higher order non linear optical paths:

“continuous truncated exponential sums” (CTES)

j>2



Further developments 

�Use of other physical systems (liquid crystal 
grating, neutrons, BEC, ions, etc.)

�Digital implementation of the CTGS algorithm

�Polynomial scaling with entangled systems as 
multi-photon entangled states
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Single generic number N

Range of numbers N min≤ N ≤ Nmax



Example for N=55 NξN << N

11 is a factor!



Example for N=55 NξN << N



Example for N=55 NξN << N



Experiments with displacement unit x = 451×461 nm
for different orders j=1,2,3 

j=3

j=2

j=1



Maximum factorable number with a single 
interferogram in perfect conditions

x fixed

For a give spectrum 

The necessary wavelength bandwidth increases 
as the maximum number to be factored

For a given number N in order to cover all the tria l factors ][ NN ,1∈ξ

ξN ≡ N λ /x 



Maximum factorable number in given 
experimental conditions

][ NN ,1∈ξ

The maximum achievable value of x together with the  
resolution in the wavelengths associated with our 
experimental device affect the largest factorable n umber 



M=2 interfering terms (one mirror blocked)

Experiment for x = 207911 nm = 451×461 nm



Generalization to continuous exponential sums

Continuous Gauss sum interferogram:

xm≡ (m-1)2 x
with m=1,2,…,M

M  optical paths 

Continuous exponential sum interferogram of order j >2:

xm≡ (m-1) j x
with m=1,2,…,M

M  optical paths 



Liquid crystal grating analog computer

Knob for the refraction indexes n m
(xm =d) 

Second solution

Liquid crystal grating
Symmetric multi-path
Michelson interferometer

Knob for the lengths x m
(nm =1) 

First solution

Experimental conditions for a generic optical analo g computer:

(m=1,2,…,M)

opm = nm xm ≡ (m-1)2 x

λ ≡ (ξN/N)  x



M-term continuous Gauss sum M different regions in a liquid crystal grating

We apply the potentials Vm such that:

opm(Vm)=n m(Vm) d= (m-1)2 x

V1

V2

VM

x0

x unit of displacement in the optical paths

Liquid crystal grating analog computer



j=3, 
M=3

j=2, M=3





Liquid crystal cells: an 
interesting behavior…  

Well defined 
behavior

A. Jafari et al. ,
Optics Communications 
266, 207-213 (2006)

Index of refraction, for 
radiation in the ordinary 
mode, fixed by the 
applied voltage V:

n = n(V)



Basic ideas in the past 
realizations of:

Interaction of M laser pulses with two level system s

Occupation probability of the excited state given b y the truncated Gauss sum

2) Cold atoms
(Gilowsky et al., PRL 100, 030201 (2008))

4) Bose Enstein Condensate in an optical lattice
(Sadgrove et al., PRL 101, 180502 (2008))

3) Sequence of shaped ultrashort pulses (Bigourd et al., PRL 100, 030202 (2008)
Weber et al., EPL 83, 34008 (2008))

1) Nuclear magnetic Resonance
(Mehring et al., PRL 98,120502 (2007)
Mahesh et al., PRA 75,062303 (2007)
Peng and Suter, EPL 84, 40006 (2008))

Gauss sum reproduced by the interference produced b y the M pulses

Gauss sum reproduced by the energy of the atomic en semble



Effective factorization with a 
discrete Gauss sum approach

For a given value of N

Input of the experiment: l
Output of the experiment: 

The experiment performs 
the ratio N/l 

Yes!

No!

Is “l” a factor? 


