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Quantum error correction attempts to create 
faithful quantum channels from noisy ones

Typically this involves encoding in a subspace
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The code subspace can be defined in terms of 
commuting observables: check operators (CO)

Errors typically change CO values:

Motivation

CO measurement → error syndrome → 

→ compute most probable error →correct
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there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
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quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
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In condensed matter, anyons emerge as excitations in
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way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate

Motivation
In some settings locality is crucial

Topological codes have geometrically local COs

Topological subsystem codes (TSC):                       
Just 2-local measurements!
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Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?

? ].

Anyon models— Anyon models are mathematically
characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-
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Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?
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Anyon models— Anyon models are mathematically
characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-



Motivation

Fault-tolerance in topological memories:          
repeatedly measure error syndrome →                    
→ keep track of errors

How to compute?

Transversal gates (color codes)

Boundaries & code deformation

NOT possible for TSCs!!!



Motivation

In 2D excitations are very special: ANYONS.

Using anyon symmetries → All CLIFFORD gates 
by code deformation on TSCs!!!

Topological codes     VS     Topological order

Code subspace     ↔     Ground subspace

Error correction     ↔    Energy gap

Error syndrome     ↔   Excitation configuration



Anyons
2D: statistics beyond bosons and fermions

Ingredients of an anyon model:

Top. charges Fusion rules Braiding rules
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quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?
]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
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In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
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able Hamiltonians on lattice spin systems [? ? ? ? ?
]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
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In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
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]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
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proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.
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changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
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In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?
]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
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]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
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that dictate the effect of particle exchanges. A symme-
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to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model

Topological Order with a Twist: Ising Anyons from an Abelian Model

H. Bombin
Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5, Canada

Anyon models can be symmetric under some permutations of their topological charges. One
can then conceive topological defects that, under monodromy, transform anyons according to a
symmetry. We study the realization of such defects in the toric code model, showing that a process
where defects are braided and fused has the same outcome as if they were Ising anyons. These ideas
can also be applied in the context of topological codes.

PACS numbers: 05.30.Pr, 03.67.Lx, 73.43.Cd

〈Ci〉 = ci

σz
1 ⊗ σz

2

σy
2 ⊗ σx

3

$=

Q ∈ {a, b, . . . }

Q′

Q × Q′ = q1 + q2 + . . .

Particle statistics are particularly rich in two spatial di-
mensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local

(a) (b) (c)

j jp

a b

j jp

a b
e

m

(d)

a b

c

 

r g b

g b r g

 

(c) (d) (e)

(a) (b)

1

2 3   X  Y  ZI

r g b

g b r g

gr

b b

r

r

g

b

r

g

b

b

g

br

r

g

g

b

g
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systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
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tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].
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way to obtain these exotic phases is by engineering suit-
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]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
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pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
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pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
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able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
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Particle statistics are particularly rich in two spatial di-
mensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [? ] for a com-
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there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting

precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?
? ].

Anyon models— Anyon models are mathematically
characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-
bels that identify the superselection sectors or topological
charges of the model. For Ising anyons there are three:
1, σ and ψ. Any given anyon carries such a charge, which
cannot be changed locally. We can also attach a charge
to a set of anyons or a to a given region. A region without
anyons has trivial charge 1.

Next we need a set of fusion rules that specify the pos-
sible values of the total charge in a composite system. In
terms of anyon processes, fusion rules specify the possible
outcomes of the fusion of two anyons, see Fig. ??(c). For
Ising anyons fusion rules take the form

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1. (3)

That is, a pair of σ-s may fuse into the vacuum or produce
a ψ, a σ and a ψ always fuse into σ and two ψ-s into the
vacuum. Fusion rules are commutative and 1× a = a.

When two σ anyons are far apart, their total charge,
which might be 1 or ψ, becomes a non-local degree of
freedom. This is indeed an example of a topologically
protected qubit, since there are two possible global states.
We can measure this qubit in the charge basis by fusing
the two σ-s and checking the output. In general for any
set of anyons with given charges there is a fusion space
that describes the non-local degrees of freedom related to
fusion outcomes. For example, for 2n σ-s with indefinite
total charge the fusion space has dimension 2n.

Braiding operations as those in Fig. ??(a,b) act on the
fusion space in a topologically protected way. This action
is in general described by braiding rules, but in the case
of Ising anyons it is possible to characterize braiding with
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Particle statistics are particularly rich in two spatial di-
mensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line

changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?
? ].

Anyon models— Anyon models are mathematically
characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-
bels that identify the superselection sectors or topological
charges of the model. For Ising anyons there are three:
1, σ and ψ. Any given anyon carries such a charge, which
cannot be changed locally. We can also attach a charge
to a set of anyons or a to a given region. A region without
anyons has trivial charge 1.

Next we need a set of fusion rules that specify the pos-
sible values of the total charge in a composite system. In
terms of anyon processes, fusion rules specify the possible
outcomes of the fusion of two anyons, see Fig. ??(c). For
Ising anyons fusion rules take the form

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1. (3)

That is, a pair of σ-s may fuse into the vacuum or produce
a ψ, a σ and a ψ always fuse into σ and two ψ-s into the
vacuum. Fusion rules are commutative and 1× a = a.

When two σ anyons are far apart, their total charge,
which might be 1 or ψ, becomes a non-local degree of
freedom. This is indeed an example of a topologically
protected qubit, since there are two possible global states.
We can measure this qubit in the charge basis by fusing
the two σ-s and checking the output. In general for any
set of anyons with given charges there is a fusion space
that describes the non-local degrees of freedom related to
fusion outcomes. For example, for 2n σ-s with indefinite
total charge the fusion space has dimension 2n.
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Particle statistics are particularly rich in two spatial di-
mensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?
]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-

ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?

? ].
Anyon models— Anyon models are mathematically

characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-
bels that identify the superselection sectors or topological
charges of the model. For Ising anyons there are three:
1, σ and ψ. Any given anyon carries such a charge, which
cannot be changed locally. We can also attach a charge
to a set of anyons or a to a given region. A region without
anyons has trivial charge 1.

Next we need a set of fusion rules that specify the pos-
sible values of the total charge in a composite system. In
terms of anyon processes, fusion rules specify the possible
outcomes of the fusion of two anyons, see Fig. ??(c). For
Ising anyons fusion rules take the form

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1. (3)

That is, a pair of σ-s may fuse into the vacuum or produce
a ψ, a σ and a ψ always fuse into σ and two ψ-s into the
vacuum. Fusion rules are commutative and 1× a = a.

When two σ anyons are far apart, their total charge,
which might be 1 or ψ, becomes a non-local degree of
freedom. This is indeed an example of a topologically
protected qubit, since there are two possible global states.
We can measure this qubit in the charge basis by fusing
the two σ-s and checking the output. In general for any
set of anyons with given charges there is a fusion space
that describes the non-local degrees of freedom related to
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there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting

precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?
? ].

Anyon models— Anyon models are mathematically
characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-
bels that identify the superselection sectors or topological
charges of the model. For Ising anyons there are three:
1, σ and ψ. Any given anyon carries such a charge, which
cannot be changed locally. We can also attach a charge
to a set of anyons or a to a given region. A region without
anyons has trivial charge 1.

Next we need a set of fusion rules that specify the pos-
sible values of the total charge in a composite system. In
terms of anyon processes, fusion rules specify the possible
outcomes of the fusion of two anyons, see Fig. ??(c). For
Ising anyons fusion rules take the form

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1. (3)

That is, a pair of σ-s may fuse into the vacuum or produce
a ψ, a σ and a ψ always fuse into σ and two ψ-s into the
vacuum. Fusion rules are commutative and 1× a = a.

When two σ anyons are far apart, their total charge,
which might be 1 or ψ, becomes a non-local degree of
freedom. This is indeed an example of a topologically
protected qubit, since there are two possible global states.
We can measure this qubit in the charge basis by fusing
the two σ-s and checking the output. In general for any
set of anyons with given charges there is a fusion space
that describes the non-local degrees of freedom related to
fusion outcomes. For example, for 2n σ-s with indefinite
total charge the fusion space has dimension 2n.

Braiding operations as those in Fig. ??(a,b) act on the
fusion space in a topologically protected way. This action
is in general described by braiding rules, but in the case
of Ising anyons it is possible to characterize braiding with
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complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?
]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion

rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?
? ].

Anyon models— Anyon models are mathematically
characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-
bels that identify the superselection sectors or topological
charges of the model. For Ising anyons there are three:
1, σ and ψ. Any given anyon carries such a charge, which
cannot be changed locally. We can also attach a charge
to a set of anyons or a to a given region. A region without
anyons has trivial charge 1.

Next we need a set of fusion rules that specify the pos-
sible values of the total charge in a composite system. In
terms of anyon processes, fusion rules specify the possible
outcomes of the fusion of two anyons, see Fig. ??(c). For
Ising anyons fusion rules take the form

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1. (3)

That is, a pair of σ-s may fuse into the vacuum or produce
a ψ, a σ and a ψ always fuse into σ and two ψ-s into the
vacuum. Fusion rules are commutative and 1× a = a.

When two σ anyons are far apart, their total charge,
which might be 1 or ψ, becomes a non-local degree of
freedom. This is indeed an example of a topologically
protected qubit, since there are two possible global states.

Toric code twists
To get twists, we simply add dislocations

Twists can be locally created in PAIRS only
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Generalized charges
EVEN number of twists → 4 possible charges 

ODD number of twists → 2 possible charges 
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Fusion rules
Twists are sinks for fermions:

Non-abelian fusion rules! 

We recover Ising rules:
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σ± × σ± = 1 + ε σ± × σ∓ = e + m

σ± × ε =σ± σ± × e = σ± × m = σ∓ (3)

Particle statistics are particularly rich in two spatial di-
mensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.
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Majorana operators
All closed string ops can be expressed in terms of 
a set of open string ops → Majorana operators

Braiding is also Ising-like → 1-qubit Clifford gates
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In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge

(a) (b)

(b) (c)

(a)
s sm

(e)

models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?

? ].
Anyon models— Anyon models are mathematically

characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-
bels that identify the superselection sectors or topological
charges of the model. For Ising anyons there are three:
1, σ and ψ. Any given anyon carries such a charge, which
cannot be changed locally. We can also attach a charge
to a set of anyons or a to a given region. A region without
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Particle statistics are particularly rich in two spatial di-
mensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?
]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
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In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
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models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
be in terms of topological order, it has direct application
in the closely related context of topological codes [? ? ?

? ].
Anyon models— Anyon models are mathematically

characterized by modular tensor categories, but we will
not need such generalities (for an introduction, see for
example [? ]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.

The first element of an anyon model is a set of la-
bels that identify the superselection sectors or topological
charges of the model. For Ising anyons there are three:
1, σ and ψ. Any given anyon carries such a charge, which
cannot be changed locally. We can also attach a charge
to a set of anyons or a to a given region. A region without
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pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
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quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules

(a) (b)

(b) (c)

(a)
s sm

(e)

that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
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quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules

(a) (b)

(b) (c)

(a)
s sm

(e)

that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.

Rather than trying a general, abstract approach, we
will focus on a well-known spin model, the toric code
model, and address twists constructively. In this model
anyons have no computational power, but we will show
that twists behave as Ising anyons [? ], which are com-
putationally interesting. In fact, they do not directly
allow universal computation, but there exist strategies
to overcome this difficulty [? ? ? ]. In [? ], Wootton
et al. also try to mimic the non-abelian behavior in an
abelian system, using an entirely different approach and
philosophy.

We remark that, although the discussion will mainly
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Particle statistics are particularly rich in two spatial di-
mensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological



TSC twists

Transpositions → 2 possible charges

As in toric codes, we fix one 

Colored Majorana operators:

The i-th twist is          and i<j           
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where defects are braided and fused has the same outcome as if they were Ising anyons. These ideas
can also be applied in the context of topological codes.
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TSC twists
Braiding is now more interesting

This gives the whole Clifford group!!!

2

(a) (b) (c)

e

m

(d)

a

c
 

r g b

g b r g

 

(c) (d) (e)

(a) (b)

1

2 3   X  Y  ZI

r g b

g b r g

gr

b b

r

r

g

b

r

g

b

b

g

br

r

g

g

b

g

(a) (b)

(b) (c)

(a)
s sm

(e)

kj → kj+1, kj+1 →







−kj if cj = cj+1,
ikjkj+1 if cj = ζ−(cj+1),
−kjkj+1 otherwise.
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Particle statistics are particularly rich in two spatial di-
mensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [? ] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [? ? ? ], where compu-
tations are carried out by braiding and fusing anyons,
see Fig. ??(a-c). The nonlocal encoding of quantum in-
formation on fusion channels and the topological nature
of braiding makes TQC naturally robust against local
perturbations, providing a complement to fault-tolerant
quantum computation [? ? ].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [? ]. A possible
way to obtain these exotic phases is by engineering suit-
able Hamiltonians on lattice spin systems [? ? ? ? ?

]. Indeed, implementations on optical lattices have been
proposed [? ]. Unfortunately, the anyon models that ap-
pear in simple models are not computationally powerful.
In this paper we address an strategy to recover compu-
tationally interesting anyon-like behavior from systems
with very simple anyonic statistics.

Our starting point are the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i)
a set of labels that identify the superselection sectors or
topological charges, (ii) fusion/splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symme-
try is a label permutation that leaves braiding and fusion
rules unchanged —for a recent survey, see [? ]—. Given a
symmetry s, we can imagine cutting the system along an
open curve, as in Fig. ??(d), and then gluing it again “up
to s”. Ideally the location of the cut itself is unphysical,
only its endpoints have a measurable effect. In partic-
ular, transporting an anyon around one end of the line
changes the charge of the anyon according to the action
of s. Our aim is to explore to which extent these topolog-
ical defects, that we call twists for short, can be “treated
as anyons” and used in TQC. Twists are being indepen-
dently studied by Kong and Kitaev [? ]. An interesting
precedent are the Alice strings appearing in some gauge
models [? ], which can cause charge conjugation under
monodromy, whereas the twists that we will discuss here
exchange electric and magnetic charges.
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Conclusions
Topological codes stand out for their locality

TSCs only require 2-local measurements

Twists reflect anyon symmetries

Twist are a tool to improve topological codes

With twists, via code deformation, we can 
implement all Clifford gates on TSCs
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