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Outline


•  Closed time-like curves (CTCs) = time travel


•  Deutsch’s model for CTCs


•  How CTCs show up in measurement-based quantum computation


•  CTC model by Bennett/Schumacher/Svetlichny


•  Conclusion




Time travel


•  To the future? Easy, use relativity.


•  To the past? More involved:


- Relativity predicts solutions with closed timelike curves (CTCs)= travel to 
the past


- It’s not known whether CTCs are physically possible, perhaps with clever 
black-hole engineering.


- To avoid paradoxes, self-consistency conditions on time-travellers must 
apply – more on that later.




Time travel - CTCs


•  Time travel scenario:
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Time travel - CTCs


•  Time travel scenario:
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•  Equivalent alternative:


CTC


U = interaction region




Deutsch’s model for CTCs


U


•  U = 2-qubit unitary


-  1 qubit travels back in time


-  1 qubit doesn’t


Deutsch, Phys. Rev. D 44, 3197 (1991)


•  Initial state:


•  After U:


•  Self-consistency condition:
€ 

ρCTC ⊗ ρin

€ 

U(ρCTC ⊗ ρin )U
+

€ 

ρCTC = TrB U(ρCTC ⊗ ρin )U
+[ ]

•  Deutsch showed that:


-    there’s always at least 1 self-consistent solution; 

-  there can be multiple such solutions;

-  each solution corresponds to an input-output map, in general non-linear.




Deutsch’s model for CTCs


U


•  Some characteristics:


-  avoids paradoxes;

-  Under-determination of multiple 

solutions/maps: maxent? wormhole 
initial conditions? …


Deutsch, Phys. Rev. D 44, 3197 (1991)


•  Computational power of Deutsch’s CTCs :


Non-orthogonal state discrimination? Solution to NP-complete problems?


-  Bacon arXiv:quant-ph/0309189v3 (solves NP-complete problems)

-  Brun et al. arXiv:0811.1209v2 (non-orthogonal state discrimination)

-  Aaronson, Watrous: arXiv:0808.2669v1 (CTCs -> PSPACE)

-  Bennett et al. arXiv:0908.3023v2 (criticism to results above)

-  Cavalcanti, Menicucci arXiv:1004.1219v2 (criticism of the criticism…)




Deutsch - example
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J−θ =
1
2
1 e− iθ

1 −e− iθ
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•  Self-consistency:


  

€ 

ρin =
1
2
(1+
 n ⋅  σ )

  

€ 

ρCTC =
1
2
(1+
 m ⋅  σ )

  

€ 

ρout =
1
2
(1+
 r ⋅  σ )

•  Solution for generic input:


•  Alternative solution for                                 :


€ 

ψin =
1
2
0 + eiθ 1( )   

€ 

ρCTC = ρout :
 m = (0,0,mz )

  

€ 

ρCTC :
 m = (nz,0,0)

ρout :
 r = (nz

2,0,0)

 
 
 Non-linear map!


€ 

J−θ



Testing Deutsch’s model


•  Discussion of computational power of CTCs uses Deutsch’s model. In the 
absence of experiments, how to check if the model is sound? 


•  We’ll see that measurement-based quantum computation offers 
an answer.


U



The one-way model of quantum computing


•  Proposed by Raussendorf/Briegel

                       [PRL 86, 5188 (2001)]


•  Consists in:


-  Preparation of standard entangled states via Heisenberg interactions – 
cluster states; 


-  Adaptive sequence of 1-qubit measurements.


•   Computational resource = quantum correlations of initial state


•  Algorithm = choice of adaptive sequence of measurements


Credit: Robert Raussendorf




Example:  J gate


•  Simple calculation shows that


•  Circuit can be represented as command sequence:

€ 

ψin =α 0 + β 1          + ≡1/ 2 0 + 1( ) 

MΘ =  Meas. on basis 
0 + eiθ 1 ↔  outcome s1 = 0

0 − eiθ 1 ↔  outcome s1 =1 

 
 
 

  

 
 
 

  
€ 

ψin

€ 

ψout

€ 

ψout = J−θ ψin

€ 

ψin

€ 

ψout

€ 

X2
s1M1

θ G ,           G ≡ CTRZ ψ in 1 ⊗ + 2

•  Equivalent circuit – measure Z, implement CTR-X (CNOT) coherently:




 J gate in MBQC = CTC


•  Stabilizers of state            :


That is,                    is stabilizer independently of the outcome s1 of the 
measurement on qubit 1:


€ 

ψin

€ 

ψout

€ 

⇔

€ 

X2
s1M1

θ G ,
G ≡ CTRZ ψin 1 ⊗ + 2

•  We can then perform stabilizer manipulation:

€ 

G

€ 

(Z1 ⊗ X2)0 = Z1
0 ⊗ X2

0 =1 (identity)
(Z1 ⊗ X2)1 = Z1

1 ⊗ X2
1

 
 
 

€ 

Z1
s1 ⊗ X2

s1

€ 

Z1
s1 ⊗ X2

s1 G = G

€ 

X2
s1M1

θ G = X2
s1M1

θ (Z1
s1X2

s1 G )

= X2
s1+s1M1

θZ1
s1 G = M1

θZ1
s1 G

Time-travel situation: we need to apply Z depending on outcome of 
measurement not yet made. 




€ 

⇔
€ 

ψin

€ 

+

€ 

J−Θ

€ 

MZ

€ 

Z

€ 

ψout

€ 

M1
θZ1

s1 G

€ 

⇔

€ 

⇔

€ 

MZ

€ 

⇔

•  Putting this CTC in Deutsch format:


 J gate in MBQC = CTC


€ 

ψout

€ 

MZ

CTC




Comparing the one-way model with Deutsch:


  

€ 



Deutsch:


  

€ 

ρin :
 n = (nx,ny,nz )

ρanc :
 m = (nz

2,0,0)
ρout = ρCTC :

 r = (nz,0,0)

 

 
 

 
 

One-way model:


€ 

ψin =α 0 + β 1

ψout = J−θ ψin =α + + βe− iθ −

€ 

ρin =
1
2
1+ nz nx − iny
nx + iny 1− nz

 

 
 

 

 
 

€ 

ρout =
1
2
1 nz
nz 1
 

 
 

 

 
 

€ 

→

Deutsch’s prediction is different from the one based on the 
one-way model.  What’s wrong with Deutsch?


€ 

ψin

€ 

ψout



CTCs: model by Bennett/Schumacher/Svetlichny (BSS)


•  Bennett and Schumacher, unpublished (2002) – see seminar http://bit.ly/crs8Lb

•  Rediscovered independently by Svetlichny (2009) - arXiv:0902.4898v1


- Related work on black holes by Horowitz/Maldacena (2004), Preskill/Gottesman (2004) 


€ 

β00 ≡
1
2
00 + 11( )

CTC
 Simulation using teleportation and post-selection: B’=C


•  We post-select projections onto 


-  Postselection successful: state B’ is teleported back in time (state C = state B’)

-  Simulation works only when post-selection happens -> finite probability of 

success. 

What are BSS’s predictions for our CTC?


€ 

β00



BSS x MBQC


€ 

ψout

€ 

MZ

CTC we studied


€ 

ψout

€ 

ancillaout

Its BSS simulation circuit


€ 

⇒

•  Simple calculation shows that BSS circuit implements (probabilistically) the map


€ 

ψin → ψout = J−θ ψ in

… recovering exactly MBQC’s prediction!


BSS is the right model to explain CTCs in MBQC, and not Deutsch’s…




Deutsch/BSS comparison


-  Deutsch’s self-consistency is achieved with artificial mixed-states, CTC qubit sent 
back in time decorrelated with other systems.


-  BSS preserves entanglement and correlations of CTC qubit due to teleportation 
step.


-  Deutsch solutions with pure-state CTC qubit coincide with BSS solution.




MBQC as deterministic simulations of CTCs


•  Stabilizer techniques enable us to simplify BSS 
circuits

-  Z deletion;

-  Local complementation. 


•  Some BSS circuits reduce to MBQC patterns 
that deterministically simulate a unitary.

- flow, gflow theorems.


•  For example, the BSS circuit above is 
equivalent to:


•  Or more simply:


€ 

ψout

€ 

ancillaout

€ 

ψin

€ 

ψout

€ 

ψin

€ 

ψout

€ 

J−Θ



Conclusions


•  CTCs appear in MBQC; we analyze them using two CTC models. 


•  BSS’s model  agrees with MBQC. 


•  Deutsch’s model is in conflict with MBQC – the CTC qubit is sent to past 
stripped of its entanglement.


•  We characterize a class of CTCs that admit deterministic simulation circuits 
using the BSS model. 


•  More work is needed to better understand implications of the BSS model:


-  MQ + Deutsch’s CTCs = PSPACE (Aaronson/Watrous 2008)

-  BSS is associated with complexity class PostBQP=PP (Aaronson 2004)

-  See recent work (and experiment) by Lloyd et al. : arXiv:1005.2219v1




PP versus PSPACE


Like BPP, PP is a class defined in an attempt to find out 
what randomness allows us to do algorithmically. 
Formally, PP is the class of problems solvable by an NP 
machine such that, given a "yes" instance, strictly more 
than 1/2 of the computation paths accept, while given 
a "no" instance, strictly less than 1/2 of the 
computation paths accept


From http://qwiki.stanford.edu/wiki/Complexity_Zoo


PP


Whereas P is a class of problems that can be solved 
in a polynomially-bounded amount of time, PSPACE is 
the class of problems that can be solved by a 
deterministic Turing machine that uses only a 
polynomially-bounded amount of space, regardless of 
how long the computation takes.


PSPACE




How BSS deals with the grandfather paradox


•  From Bennett’s talk slides:  http://bit.ly/crs8Lb


•  Paradoxical combinations of input and unitary result in post-selection with 
success probability p=0.




Bennett’s classical motivation for the BSS model


From Bennett’s talk (2005).



