Closed timelike curves in measurement-based quantum computation

Ernesto F. Galvão

Raphael Dias da Silva
Instituto de Física - Universidade Federal Fluminense (Brazil)

Elham Kashefi
School of Informatics, Univ. of Edinburgh

QAMFWorkshop - UBC - July $24^{\text {th }} 2010$ arXiv:I003.497|v\| [quant-ph]

Outline

- Closed time-like curves (CTCs) = time travel
- Deutsch's model for CTCs
- How CTCs show up in measurement-based quantum computation
- CTC model by Bennett/Schumacher/Svetlichny
- Conclusion

Time travel

- To the future? Easy, use relativity.

- To the past? More involved:
- Relativity predicts solutions with closed timelike curves (CTCs)= travel to the past
- It's not known whether CTCs are physically possible, perhaps with clever black-hole engineering.
- To avoid paradoxes, self-consistency conditions on time-travellers must apply - more on that later.

Time travel - CTCs

- Time travel scenario:

Trip back in time $=$ CTC

$$
\begin{gathered}
V=\text { interaction region } \\
\text { between you (past) and you } \\
\text { (future) }
\end{gathered}
$$

Time travel - CTCs

- Time travel scenario:

Trip back in time $=$ CTC

$V=$ interaction region between you (past) and you (future)

- Equivalent alternative:

$U=$ interaction region

Deutsch's model for CTCs

Deutsch, Phys. Rev. D 44, 3197 (1991)

- $U=2$-qubit unitary
- I qubit travels back in time
- I qubit doesn't

- Initial state: $\quad \rho_{C T C} \otimes \rho_{i n}$
- After U: $U\left(\rho_{C T C} \otimes \rho_{\text {in }}\right) U^{+}$
- Self-consistency condition: $\quad \rho_{C T C}=\operatorname{Tr}_{B}\left[U\left(\rho_{C T C} \otimes \rho_{i n}\right) U^{+}\right]$
- Deutsch showed that:
- there's always at least I self-consistent solution;
- there can be multiple such solutions;
- each solution corresponds to an input-output map, in general non-linear.

Deutsch's model for CTCs

- Some characteristics:
- avoids paradoxes;
- Under-determination of multiple solutions/maps: maxent? wormhole initial conditions? ...

- Computational power of Deutsch's CTCs :

Non-orthogonal state discrimination? Solution to NP-complete problems?

- Bacon arXiv:quant-ph/0309189v3 (solves NP-complete problems)
- Brun et al. arXiv:08|I.1209v2 (non-orthogonal state discrimination)
- Aaronson,Watrous: arXiv:0808.2669vI (CTCs -> PSPACE)
- Bennett et al. arXiv:0908.3023v2 (criticism to results above)
- Cavalcanti, Menicucci arXiv:I004.12I9v2 (criticism of the criticism...)

Deutsch - example

$$
\begin{aligned}
& \rho_{\text {in }} \\
& \rho_{\text {in }}=\frac{1}{2}(1+\vec{n} \cdot \vec{\sigma}) \\
& \text { Self-consistency: }
\end{aligned} \begin{array}{ll}
\rho_{\text {CTC }}= & =\frac{1}{2}(1+\vec{m} \cdot \vec{\sigma}) \quad \rho_{\text {out }}=\frac{1}{2}(1+\vec{r} \cdot \vec{\sigma}) \\
1 & 0
\end{array} 0
$$

- Solution for generic input: $\left\{\begin{array}{l}\rho_{C T C}: \vec{m}=\left(n_{z}, 0,0\right) \\ \rho_{\text {out }}: \vec{r}=\left(n_{z}^{2}, 0,0\right)\end{array}\right.$
- Alternative solution for $\left|\psi_{\text {in }}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \theta}|1\rangle\right): \rho_{C T C}=\rho_{\text {out }}: \vec{m}=\left(0,0, m_{z}\right)$

Testing Deutsch's model

- Discussion of computational power of CTCs uses Deutsch's model. In the absence of experiments, how to check if the model is sound?
- We'll see that measurement-based quantum computation offers an answer.

The one-way model of quantum computing

- Proposed by Raussendorf/Briegel [PRL 86, 5188 (2001)]
- Consists in:

- Preparation of standard entangled states via Heisenberg interactions cluster states;
- Adaptive sequence of I-qubit measurements.
- Computational resource $=$ quantum correlations of initial state
- Algorithm = choice of adaptive sequence of measurements

Example: J gate

- Simple calculation shows that $\left|\psi_{\text {out }}\right\rangle=J_{-\theta}\left|\psi_{\text {in }}\right\rangle$
- Circuit can be represented as command sequence:

$$
X_{2}^{s 1} M_{1}^{\theta}|G\rangle, \quad|G\rangle \equiv C T R_{Z}\left|\psi_{i n}\right\rangle_{1} \otimes|+\rangle_{2}
$$

- Equivalent circuit - measure Z, implement CTR-X (CNOT) coherently:

J gate in MBQC = CTC

$$
\Leftrightarrow \begin{aligned}
& X_{2}^{s l} M_{1}^{\theta}|G\rangle, \\
& |G\rangle \equiv C T R_{Z}\left|\psi_{i n}\right\rangle_{1} \otimes|+\rangle_{2}
\end{aligned}
$$

- Stabilizers of state $|G\rangle:\left\{\begin{array}{l}\left(Z_{1} \otimes X_{2}\right)^{0}=Z_{1}^{0} \otimes X_{2}^{0}=1 \text { (identity) } \\ \left(Z_{1} \otimes X_{2}\right)^{1}=Z_{1}^{1} \otimes X_{2}^{1}\end{array}\right.$

That is, $Z_{1}^{s 1} \otimes X_{2}^{s 1}$ is stabilizer independently of the outcome s, of the measurement on qubit I :

$$
Z_{1}^{s 1} \otimes X_{2}^{s 1}|G\rangle=|G\rangle
$$

- We can then perform stabilizer manipulation:

$$
\begin{aligned}
& X_{2}^{s 1} M_{1}^{\theta}|G\rangle=X_{2}^{s 1} M_{1}^{\theta}\left(Z_{1}^{s 1} X_{2}^{s 1}|G\rangle\right) \\
& =X_{2}^{s 1+s 1} M_{1}^{\theta} Z_{1}^{s 1}|G\rangle=M_{1}^{\theta} Z_{1}^{s 1}|G\rangle
\end{aligned}
$$

Time-travel situation: we need to apply Z depending on outcome of measurement not yet made.

J gate in MBQC = CTC

- Putting this CTC in Deutsch format:

Comparing the one-way model with Deutsch:

Deutsch's prediction is different from the one based on the one-way model. What's wrong with Deutsch?

CTCs: model by Bennett/Schumacher/Svetlichny (BSS)

- Bennett and Schumacher, unpublished (2002) - see seminar http://bit.ly/crs8Lb
- Rediscovered independently by Svetlichny (2009) - arXiv:0902.4898v
- Related work on black holes by Horowitz/Maldacena (2004), Preskill/Gottesman (2004)

CTC

Simulation using teleportation and post-selection: $B^{\prime}=C$

- We post-select projections onto $\left|\beta_{00}\right\rangle$
- Postselection successful: state B^{\prime} is teleported back in time (state C = state B^{\prime})
- Simulation works only when post-selection happens -> finite probability of success.

BSS x MBQC

- Simple calculation shows that BSS circuit implements (probabilistically) the map

$$
\left|\psi_{i n}\right\rangle \rightarrow\left|\psi_{o u t}\right\rangle=J_{-\theta}\left|\psi_{i n}\right\rangle
$$

... recovering exactly MBQC's prediction!

BSS is the right model to explain CTCs in MBQC, and not Deutsch's...

Deutsch/BSS comparison

- Deutsch's self-consistency is achieved with artificial mixed-states, CTC qubit sent back in time decorrelated with other systems.
- BSS preserves entanglement and correlations of CTC qubit due to teleportation step.
- Deutsch solutions with pure-state CTC qubit coincide with BSS solution.

MBQC as deterministic simulations of CTCs

- Stabilizer techniques enable us to simplify BSS circuits
- Z deletion;
- Local complementation.

(a)
- Or more simply:

Conclusions

- CTCs appear in MBQC; we analyze them using two CTC models.
- BSS's model agrees with MBQC.
- Deutsch's model is in conflict with MBQC - the CTC qubit is sent to past stripped of its entanglement.
- We characterize a class of CTCs that admit deterministic simulation circuits using the BSS model.
- More work is needed to better understand implications of the BSS model:
- MQ + Deutsch's CTCs = PSPACE (Aaronson/Watrous 2008)
- BSS is associated with complexity class PostBQP=PP (Aaronson 2004)
- See recent work (and experiment) by Lloyd et al. : arXiv:I005.22|9v|

PP versus PSPACE

From http://qwiki.stanford.edu/wiki/Complexity_Zoo

PP

Like BPP, PP is a class defined in an attempt to find out what randomness allows us to do algorithmically. Formally, PP is the class of problems solvable by an NP machine such that, given a "yes" instance, strictly more than I/2 of the computation paths accept, while given a "no" instance, strictly less than I/2 of the computation paths accept

PSPACE

Whereas \underline{P} is a class of problems that can be solved in a polynomially-bounded amount of time, PSPACE is the class of problems that can be solved by a deterministic Turing machine that uses only a polynomially-bounded amount of space, regardless of how long the computation takes.

How BSS deals with the grandfather paradox

- From Bennett's talk slides: http://bit.ly/crs8Lb

- Paradoxical combinations of input and unitary result in post-selection with success probability $p=0$.

Bennett's classical motivation for the BSS model

Woody Allen MC can be used to simulate time travel without need of any exotic physical equipment.

From Bennett's talk (2005).

