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* Closed time-like curves (CTCs) = time travel

® Deutsch’s model for CTCs

* How CTCs show up in measurement-based quantum computation

* CTC model by Bennett/Schumacher/Svetlichny

* Conclusion



Time travel

* To the future! Easy, use relativity.

* To the past! More involved:

- Relativity predicts solutions with closed timelike curves (CTCs)= travel to
the past

- It’s not known whether CTCs are physically possible, perhaps with clever
black-hole engineering.

- To avoid paradoxes, self-consistency conditions on time-travellers must
apply — more on that later.



Time travel - CTCs

Time travel scenario:

Entrance

Trip back in time = CTC

V = interaction region
v between you (past) and you

‘%f Exit (future)
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Time travel - CTCs

® Time travel scenario:

~

Trip back in time = CTC

Entrance : V = interaction region
\ i U between you (past) and you
! . future
v , Exit ( )
. . time
* Equivalent alternative:
CTC

8

U U = interaction region

Entrance — Exit




Deutsch’s model for CTCs

Deutsch, Phys. Rev. D 44,3197 (1991)

U = 2-qubit unitary C pCTC
- | qubit travels back in time —:

- | qubit doesn’t
pin %ut

* Initial state:  Pere @ P,
o AfterU: U(ppe ® p,)U"
* Self-consistency condition: Pcere = T?‘B [U(pCTC X P, )U+:|
* Deutsch showed that:
- there’s always at least | self-consistent solution;

- there can be multiple such solutions;
- each solution corresponds to an input-output map, in general non-linear.



Deutsch’s model for CTCs

Deutsch, Phys. Rev. D 44,3197 (1991)
* Some characteristics:

C )p CTC
- avoids paradoxes;

- Under-determination of multiple U

solutions/maps: maxent? wormhole p. —— — P
1n out

initial conditions!? ...

* Computational power of Deutsch’s CTCs :
Non-orthogonal state discrimination? Solution to NP-complete problems?

- Bacon arXiv:quant-ph/0309189v3 (solves NP-complete problems)

- Brun et al arXiv:0811.1209v2 (non-orthogonal state discrimination)

- Aaronson,Watrous: arXiv:0808.2669v| (CTCs -> PSPACE)

- Bennett et al. arXiv:0908.3023v2 (criticism to results above)

- Cavalcanti, Menicucci arXiv:1004.1219v2 (criticism of the criticism...)




Deutsch - example
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pm=5(l+n-0) pCTC=5(1+m-a) pom=5(l+r-o)
* Self-consistency: Mz = Tz _
my = my(ngsinf — ny cosb),
m, = m,(ngcosf +n,sinb).

Dere i = (1,0,0)
P Vo= (I’ZZZ,O,O) <: Non-linear map!

* Solution for generic input: {

®* Alternative solution for ‘wm> — —(\O>+ o0

1
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D) $Perc = Poe i1 = (0,0,m.)



Testing Deutsch’s model

pin out

* Discussion of computational power of CTCs uses Deutsch’s model. In the
absence of experiments, how to check if the model is sound?

* We'll see that measurement-based quantum computation offers
an answer.



The one-way model of quantum computing

* Proposed by Raussendorf/Briegel = trt : B 1‘ f i>
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[PRL 86,5188 (2001)] D L +L+ Y IREE
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* Consists in: Credit: Robert Raussendorf

- Preparation of standard entangled states via Heisenberg interactions —
cluster states;
- Adaptive sequence of |-qubit measurements.

* Computational resource = quantum correlations of initial state

* Algorithm = choice of adaptive sequence of measurements



Example: | gate

Vi) —4—M® w,)=al0)+ A1) |+)=1/+2(0)+|1))
+) X F[¥.)| M® = Meas. on basis - 0) +¢"|1) <> outcome s1 =0
(@) ‘O> —e'|1) <= outcome s1 =1

* Simple calculation shows that \%m =J \%)

® Circuit can be represented as command sequence:
sl 0 —
X; M, ‘G>’ ‘G>=CTRZ‘1/}m>1 ®‘+>2
* Equivalent circuit — measure Z, implement CTR-X (CNOT) coherently:

Vi) I Jo I @

|+> L/ ‘lpout>

(b)




] gate in MBQC = CTC

Vi) T@z XM?|G),

l+) X %) < ‘G> = CTRZ‘win >1 ® ‘+>2

(a)
0 _ 0 0 _1 (i -
* Stabilizers of state ‘G> ; (2 ®X,)" =2, ©X; =1 (1dentity)
(Z,®X,) =2 ®X,
Thatis, Z" ® X} is stabilizer independently of the outcome s, of the
measurement on qubit |:

Z!' ® X;'|G) =|G)
®* We can then perform stabilizer manipulation:

X, M |G)=X; M (Z'X5|G))
=X, "'"M}Z"|G) =|M{ Z}"|G)

Time-travel situation: we need to apply Z depending on outcome of
measurement not yet made.




] gate in MBQC = CTC

® Putting this CTC in Deutsch format:

M’z

G> < Wm>:I’ Z—J 6 @




Comparing the one-way model with Deutsch:

F """"""""""" ' p('T(f
i Lo : Deutsch:

Py :n=n,n,n.)

0. i =(n2,0,0)

\pout = Pcrc i 7 =(n.,0,0)

n,—in, 1
1 % pout =5
—-n, n

piﬂj_I ‘:)mc
|+) . __________________________ Rout 1( 1+n,
U Pin = E(nx +in,
‘w > @: One-way model:
" | X > win>=a‘0>+[)"1>
+ [ wout
()

T'IUOMZ> = ‘]—0 ‘lpm> = a‘+> + ﬁe_ig

-)

Deutsch’s prediction is different from the one based on the
one-way model. What’s wrong with Deutsch?




CTCs: model by Bennett/Schumacher/Svetlichny (BSS)

* Bennett and Schumacher, unpublished (2002) — see seminar http://bit.ly/crs8Lb
* Rediscovered independently by Svetlichny (2009) - arXiv:0902.4898v |
- Related work on black holes by Horowitz/Maldacena (2004), Preskill/Gottesman (2004)
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CTC Simulation using teleportation and post-selection: B'=C

®* We post-select projections onto \/300>

- Postselection successful: state B’ is teleported back in time (state C = state B’)
- Simulation works only when post-selection happens -> finite probability of
success.

What are BSS’s predictions for our CTC?




BSS x MBQC

| ancilla,,,)

Vo)
CTC we studied Its BSS simulation circuit

* Simple calculation shows that BSS circuit implements (probabilistically) the map

‘Wm> g ‘?‘pout> = J—H ‘wm>

... recovering exactly MBQC’s prediction!

‘ BSS is the right model to explain CTCs in MBQC, and not Deutsch’s...




Deutsch/BSS comparison
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CTC
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- Deutsch’s self-consistency is achieved with artificial mixed-states, CTC qubit sent

back in time decorrelated with other systems.
- BSS preserves entanglement and correlations of CTC qubit due to teleportation

step.

- Deutsch solutions with pure-state CTC qubit coincide with BSS solution.



MBQC as deterministic simulations of CTCs

Stabilizer techniques enable us to simplify BSS
circuits

-  Z deletion;

-  Local complementation.

Some BSS circuits reduce to MBQC patterns

that deterministically simulate a unitary.
- flow, gflow theorems.

For example, the BSS circuit above is
equivalent to:

Or more simply:

| ancilla,,,)
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Conclusions
[ —

* CTGCs appear in MBQGC; we analyze them using two CTC models.
* BSS’s model agrees with MBQC.

* Deutsch’s model is in conflict with MBQC — the CTC qubit is sent to past
stripped of its entanglement.

®*  We characterize a class of CTCs that admit deterministic simulation circuits
using the BSS model.

®* More work is needed to better understand implications of the BSS model:

- MQ + Deutsch’s CTCs = PSPACE (Aaronson/Watrous 2008)
- BSS is associated with complexity class PostBQP=PP (Aaronson 2004)
- See recent work (and experiment) by Lloyd et al.:arXiv:1005.22 | 9v|




PP versus PSPACE

From http://qwiki.stanford.edu/wiki/Complexity Zoo ALL

E)

Like BPF PP is a class defined in an attempt to find out
what randomness allows us to do algorithmically. EXP
Formally, PP is the class of problems solvable by an NP

PSPACE
machine such that, given a "yes" instance, strictly more
than |/2 of the computation paths accept, while given p#P
a "no" instance, strictly less than 1/2 of the
computation paths accept /PH i

AM

PS PAC E P/poly SZK MA

/
Whereas P is a class of problems that can be solved |
in a polynomially-bounded amount of time, PSPACE is NF
BPP

BQP

coNP

the class of problems that can be solved by a /
deterministic Turing machine that uses only a T~
polynomially-bounded amount of space, regardless of Nlc

how long the computation takes.



How BSS deals with the grandfather paradox

®* From Bennett’s talk slides: http://bit.ly/crs8Lb

Success
®,?  probability
1) A s W =0
Do T .
\/ Undefined

Post selection Output

(1010) 111 5) W2
(1010) +[101)) A2

® Paradoxical combinations of input and unitary result in post-selection with
success probability p=0.



Bennett’s classical motivation for the BSS model

Woody Allen MC can be used to simulate time travel without
need of any exotic physical equipment.

Accept if guessed
% future state turns
/ outto have been
correct.

Initial state

Inter-

2 g [wton 2 T, 2

Post selection

Final state,
Guess a trial future state for havmg ;
oneself, from an alphabet of CAPELICHCO

time travel

possible states, e.g.

and make two copies of it.
Set one aside, use other in
simulation.

From Bennett’s talk (2005).



