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i.e. quantum states emerge as statistical distributions (epistemic states)
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= Stabilizer theory for qutrits



These theories include:

• Most basic quantum phenomena
e.g. noncommutativity, Interference, coherent superposition, collapse, 
complementary bases, no-cloning, …

• Most quantum information-processing tasks
e.g. teleportation, key distribution, quantum error correction, 
improvements in metrology, dense coding, …

• A large part of entanglement theory
e.g. monogamy, distillation, deterministic and probabilistic single copy 
entanglement transformation, catalysis, …

• A large part of the formalism of quantum theory
e.g. Choi-Jamiolkowski isomorphism, Naimark extension, Stinespring 
dilation, multiple convex decompositions of states, …
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Not so strange after all!
Still surprising!

Find more!
Focus on these



Speculative possibility for an axiomatization of quantum theory

A research program

Principle 1: There is a fundamental restriction on observers capacities to 
know and control the systems around them

Principle 2: ??? (Some change to the classical picture of the world)
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Classical complementarity 
as a statistical restriction with broad applicability

Joint work with Olaf SchreiberJoint work with Olaf Schreiber

Building upon:
RS, quant-ph/0401052 [Phys. Rev. A 75, 032110 (2007)]

S. van Enk, arxiv:0705.2742 [Found. Phys. 37, 1447 (2007)]

D. Gross, quant-ph/0602001 [J. Math. Phys. 47, 122107 (2006)]

S. Bartlett, T. Rudolph, RS, unpublished



A fact about operational quantum theory:

Jointly-measurable observables     =     a commuting set of observables
(relative to matrix commutator)

This suggests a restriction on a classical statistical theory:This suggests a restriction on a classical statistical theory:

Jointly-knowable variables       =      a commuting set of variables
(relative to Poisson bracket)



Configuration space: Rn ∋ (x1, x2, . . . , xn)

Phase space: - ≡ R2n ∋ (x1, p1, x2, p2, . . . , xn, pn) ≡ m

F : - → RFunctionals on phase space:

Poisson bracket of functionals:

Continuous degrees of freedom

Xk(m) = xk
Pk(m) = pk

Poisson bracket of functionals:

The linear functionals / canonical variables are:

Independent of m



Poisson bracket of functionals:

Xk(m) = xk
Pk(m) = pk

Configuration space:

Phase space:

(Zd)
n ∋ (x1, x2, . . . , xn)

- ≡ (Zd)
2n ∋ (x1, p1, x2, p2, . . . , xn, pn) ≡ m

F : - → ZdFunctionals on phase space:

Discrete degrees of freedom Zd = {0, 1, . . . , d− 1}

Poisson bracket of functionals:

The linear functionals / canonical variables are:

Independent of m

(F [m + exi] − F [m]) (G[m + epi] −G[m])
−(F [m + epi] − F [m]) (G[m + eqi] −G[m])



A canonically conjugate pair

A commuting pair

e.g. 

e.g. 

The principle of classical complementarity:

An observer can only have knowledge of the values of a commuting 
set of canonical variables and is maximally ignorant otherwise.



Symplectic geometry
ω : - × - → RSymplectic inner product

ω(m,m′) = mTJm′ where

ω(m,m′) =
∑
i

(
qip

′
i − piq

′
i

)Thus

Poisson bracket of functionals = symplectic inner product of vectors

F=
∑
i (aiXi + biPi)

The linear functionals

form a dual space

{X1, P1, . . . ,Xn, Pn} is dual to {ex1 , ep1 , . . . , exn, epn}



A set of known variables V

∀F,G ∈ V : [F,G] = 0

These are specified by:

A valuation of the known variables 

v : V → R(Zd)

V = {X1, P2}

v(X1) = 2, v(P2) = 2

Valid epistemic states:

Example:

An isotropic subspace V ⊆ Ω∗

∀F,G ∈ V : ω(F,G) = 0

A valuation vector v ∈ V *⊆ Ω

v : ∀F ∈ V, FTv = v(F )

Equivalently,

V

v



≡ V ⊥ + v

= {m ∈ - | ∀F ∈ V : FTm = FTv}

= {m ∈ - | PVm = v}

The ontic states consistent with the epistemic state (V,v) are

{m ∈ - | ∀F ∈ V : F (m) = v(F )}

( ) = 1 ( )

The associated distribution is
(Dirac-delta / Kronecker delta)

V = {X1, X2}

v(X1) = 1, v(X2) = 2

V ⊥ + v = {m ∈ - | X1(m) = 1, X2(m) = 2}
= {( 1, s, 2, t) | s, t ∈ R}

Example

pV,v(m) = 1
N δV ⊥+ v(m)

“Heisenberg picture” and “Schrodinger picture” 

v



The group of symplectic affine transformations (Clifford group)

where

and

Valid reversible transformations:

Those that preserve the Poisson bracket / symplectic inner product:

Symplectic

Affine (Heisenberg-Weyl)and Affine (Heisenberg-Weyl)



Valid reproducible measurements:

Any commuting set of canonical variables



Restricted Liouville mechanics

- = R2n- = R2n

X

P



X

P

X

Pv V

V

v

Valid epistemic states for a single degree of freedom

X

P

V

v

X

PV=∅



Valid epistemic states for a pair of degrees of freedom



Restricted statistical theory of trits

- = (Z3) 2n

0

1

2

0 1 2



Canonical variables Commuting sets:
The singleton sets
the empty set

Valid epistemic states for a single trit

known known known known

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

Nothing known

0   1   2 0   1   2 0   1   2 0   1   2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2



22
21

How to represent this graphically

Canonical variables

Valid epistemic states for a pair of trits
a1, b1, a2, b2 ∈ Z3

00 01 02 10 11 12 20 21 22

21
20
12
11
10
02
01
00



22
21
20
12
11
10

known

22
21
20
12
11
10

known

1 variable known

10
02
01
00

10
02
01
00

00 01 02 10 11 12 20 21 22 00 01 02 10 11 12 20 21 22



knownand

22
21
20
12
11
10

2 variables known

10
02
01
00

00 01 02 10 11 12 20 21 22



22
21
20
12
11
10

known

22
21
20
12
11

known

1 variable known

10
02
01
00

10
02
01
00

00 01 02 10 11 12 20 21 22 00 01 02 10 11 12 20 21 22



22
21
20
12

and known

2 variables known

12
11
10
02
01
00

00 01 02 10 11 12 20 21 22



On a single trit

On a pair of trits

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

22 22

Valid reproducible measurements

22
21
20
12
11
10
02
01
00

22
21
20
12
11
10
02
01
00

00 01 02 10 11 12 20 21 2200 01 02 10 11 12 20 21 22

etc.



Restricted statistical theory of bits

- = (Z2) 2n

0      1  

0

1



Canonical variables

A single bit

known known known

Epistemic states of maximal knowledge

0   1   
0
1

0   1   
0
1

0   1   
0
1

a, b ∈ Z2

0   1   
0
1

0   1   
0
1

0   1   
0
1

0   1   
0
1

Nothing known

Epistemic states of non-maximal knowledge



Canonical variables

A pair of bits

11
10
01
00

a1, b1, a2, b2 ∈ Z2

00 01 10 11
00



known known

1 variable known

00 01 10 11

11
10
01
00

00 01 10 11

11
10
01
00

2 variables known

knownand

2 variables known

00 01 10 11

11
10
01
00



1 variable known

00 01 10 11

11
10
01
00

00 01 10 11

11
10
01
00

2 variables known

known known

2 variables known

00 01 10 11

11
10
01
00

and known



0   1   
0
1

0   1   
0
1

0   1   
0
1



Equivalence of these 
restricted statistical theories 

to “subtheories” of quantum theoryto “subtheories” of quantum theory

Look to a representation of quantum theory on phase space 
– the Wigner representation



Restricted Liouville mechanics
= Quadrature Quantum Mechanics

- = R2n- = R2n

X

P



Quadrature quantum mechanics

F̂ : L2(Rn) → L2(Rn)Hermitian operators:

Commutator:

The quadrature operators are:

Quadrature states are eigenstates of a commuting set of quadrature operators

(Quadrature transformations and measurements take quadrature states 
to quadrature states)

Specified by an isotropic subspace V and a valuation vector v∈V



Wigner representation of quantum mechanics

Weyl operator

Quantum state ρ

Characteristic function

Wigner function

WV,v(m) = 1
N δV ⊥+ v(m)

For quadrature state associated with V, v



Theorem: Restricted statistical Liouville mechanics is empirically 
equivalent to quadrature quantum mechanics

Equivalence of states implies equivalence of measurements and transformations
Therefore



Restricted statistical theory of trits
= Stabilizer theory for qutrits

- = (Z3) 2n- = (Z3) 2n

0

1

2

0 1 2



C



C3









Theorem: The restricted statistical theory of trits is empirically 
equivalent to the Stabilizer theory for qutrits

Equivalence of states implies equivalence of measurements and transformations
Therefore



Restricted statistical theory of bits
≃ Stabilizer theory for qubits

- = (Z2) 2n- = (Z2) 2n

0      1  

0

1



Analogously to what we did for trits, one can:

Define stabilizer theory for qubits
Define Gross’ discrete Wigner function for qubits

Find: Wigner function can be negative for qubit stabilizer states

The restricted statistical theory of bits is not equivalent but very 
close to the Stabilizer theory for qubits



The knowledge-balance principle:

Knowledge balance vs. classical complementarity 

The principle of classical complementarity:

An observer can only have knowledge of the values of a commuting 
set of canonical variables and otherwise is maximally ignorant.

Contrast:

The knowledge-balance principle:

The only distributions that can be prepared are those that 
correspond to knowing at most half the information

From: RS, quant-ph/0401052 [Phys. Rev. A 75, 032110 (2007)]



Knowledge-balance principle:
It is forbidden by an assumption of locality and the existence of 
nontrivial measurements:

The same epistemic states are found to be valid, but the logic is different…

is forbidden

00 01 10 11

11
10
01
00

Example:

nontrivial measurements:

X2 = 0 and X1 + P2 = 0   but [X2, X1 + P2] ≠ 0

Principle of epistemic complementarity:
It is forbidden because it corresponds to

Find X1=1



What about applying knowledge-balance to trits?
(See S. van Enk, arxiv:0705.2742)

Valid epistemic states for a pair of systems are different!

22
21
20

and known

20
12
11
10
02
01
00

00 01 02 10 11 12 20 21 22

Allowed by knowledge-balance, but 
corresponding to nothing in QM!



Knowledge-Balance 
PrinciplePrinciple

2003-2008

Long live Symplectic Structure!



Beyond classical complementarity: could a different statistical 
restriction get us closer to quantum theory?

NO for discrete degrees of freedom

Supplementing the unitary representation of the Clifford group with a 
single non-Clifford unitary yields all unitaries

YES for continuous degrees of freedom

In addition to rotations and displacements in phase space, one can 
add squeezing – one gets all the quadratic Hamiltonians

(Bartlett, Rudolph, Spekkens, unpublished)



The classical uncertainty principle:

The only Liouville distributions that can be prepared are those satisfying 

and that have maximal entropy for a given set of second-order moments.

The theory is empirically equivalent to Gaussian quantum mechanics



Even number of 

Why the restricted statistical theory of bits
Is not equivalent to qubit stabilizer theory

Even number of 
correlations

Odd number of 
correlations

Qubit stabilizer theory is nonlocal and contextual (e.g. GHZ)
Restricted statistical theory of bits is local and noncontextual



0   1   
0
1

0   1   
0
1

0   1   
0
1

0   1   
0
1

0   1   
0
1

0   1   
0
1

According to Knowledge-Balance

Valid epistemic states for a single system

0   1   0   1   0   1   

Plus permutations of rows and columns

Valid epistemic states for a pair of systems



Knowledge-balance principle:
It is forbidden by an assumption of locality and the existence of 
nontrivial measurements:

The same epistemic states are found to be valid, but the logic is different…

is forbidden

00 01 10 11

11
10
01
00

Example:

nontrivial measurements:

X2 = 0 and X1 + P2 = 0   but [X2, X1 + P2] ≠ 0

Principle of epistemic complementarity:
It is forbidden because it corresponds to

Are the two theories 
always equivalent?

Find X1=1



What about applying knowledge-balance to trits?
(See S. van Enk, arxiv:0705.2742)

Valid epistemic states for a single system are the same
Valid epistemic states for a pair of systems are slightly different!

22
21

and known

22
21

and known

21
20
12
11
10
02
01
00

00 01 02 10 11 12 20 21 22

21
20
12
11
10
02
01
00

00 01 02 10 11 12 20 21 22

Ruled out by locality
Allowed by locality, but 

corresponding to nothing in QM!







Valid epistemic states for a pair of degrees of freedom



Convex theories

Quantum theory

Category Theory 
Framework

Classical theory

Convex theories
with maximal dual cone

C*  algebraic theories
Possibilistic Theories

Classical Statistical Theories 
with epistemic restriction



00 01 02 10 11 12 20 21 22
0   1   2

0
1
2

22
21

How to represent this graphically

00 01 02 10 11 12 20 21 22

21
20
12
11
10
02
01
00



X1=0

P1=0

X2=0 P2=0 X2+P2=0 X2-P2=0

Uncorrelated pure epistemic states

X1+P1=0

X1-P1=0



X1+X2=0
P1-P2=0

X1+X2=0
X1+P1-P2=0

X1+X2=0
X1-P1+P2=0

X1-X2=0
P1+P2=0

X1-X2=0
X1-P1-P2=0

X1-X2=0
P1+X2+P2=0

X1-P2=0
P1-X2=0

X1-P2=0
P1-X2+P2=0

X1-P2=0
P1-X2-P2=0

P1-X2=0
X1+P1-P2=0

X1+P1-X2=0
X1+X2-P2=0

P1-P2=0
X1-P1+X2=0

Correlated pure epistemic states

P1-X2=0 P1-X2+P2=0 P1-X2-P2=0 X1+P1-P2=0 X1+X2-P2=0 X1-P1+X2=0

P1-X2=0
X1-P1-P2=0

X1+P1-X2=0
X1-P1-X2-P2=0

X1-X2-P2=0
X1-P1+X2=0

X1+P2=0
P1+X2=0

X1+P2=0
P1+X2+P2=0

X1+P2=0
P1+X2-P2=0

P1+X2=0
X1+X2+P2=0

X1+P1-P2=0
P1-X2+P2=0

X1+P1+P2=0
P1-P2=0

P1+X2=0
X1+P1+P2=0

P1+P2=0
X1-X2+P2=0

X1-P1-P2=0
P1-X2-P2=0



Valid reversible transformations

1 trit example:

2 trit example:



On a single trit

On a pair of trits

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

0   1   2
0
1
2

22 22

Valid reproducible measurements

22
21
20
12
11
10
02
01
00

22
21
20
12
11
10
02
01
00

00 01 02 10 11 12 20 21 2200 01 02 10 11 12 20 21 22

etc.



X1=0

P1=0

X2=0 P2=0 X2+P2=0

Uncorrelated pure epistemic states

X1+P1=0



Correlated pure epistemic states



0   1  
0
1

11
10
01
00

00 01 10 11



0   1   
0
1

0   1   
0
1

0   1   
0
1


