Why the quantum? Insights from classical theories with a statistical restriction

In the sense of reproducing the operational predictions

In the sense of reproducing the operational predictions

i.e. quantum states emerge as statistical distributions (epistemic states)

Classical theory

Mechanics

Bits

Trits

Statistical theory for the classical theory

Liouville mechanics

Statistical theory of bits

Statistical theory of trits

Restricted Statistical theory for the classical theory

Restricted Liouville mechanics = Gaussian quantum mechanics

Restricted statistical theory of bits \simeq Stabilizer theory for qubits

Restricted statistical theory of trits = Stabilizer theory for qutrits

These theories include:

- Most basic quantum phenomena
e.g. noncommutativity, Interference, coherent superposition, collapse, complementary bases, no-cloning, ...

- Most quantum information-processing tasks

e.g. teleportation, key distribution, quantum error correction, improvements in metrology, dense coding, ...

- A large part of entanglement theory
e.g. monogamy, distillation, deterministic and probabilistic single copy entanglement transformation, catalysis, ...
- A large part of the formalism of quantum theory
e.g. Choi-Jamiolkowski isomorphism, Naimark extension, Stinespring dilation, multiple convex decompositions of states, ...

Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

Those not arising in a restricted statistical classical theory

Wave-particle duality
noncommutativity
entanglement
Quantized spectra
Interference
collapse

Teleportation
No cloning
Coherent superposition
Key distribution
Bell inequality violations
Quantum eraser

Improvements in metrology
Bell-Kochen-Specker theorem

Computational speed-up
Pre and post-selection
"paradoxes"
Particle statistics

Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

Interference
Noncommutativity
Entanglement
Collapse
Wave-particle duality
Teleportation
No cloning
Key distribution
Improvements in metrology
Quantum eraser
Coherent superposition
Pre and post-selection "paradoxes"
Others...
Quantized spectra?
Particle statistics?
Others...

Those not arising in a restricted statistical classical theory

Bell inequality violations
Computational speed-up
Bell-Kochen-Specker theorem Certain aspects of items on the left Others...

Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

Interference
Noncommutativity
Entanglement
Collapse
Wave-particle duality
Teleportation
Nn cloninn
Not so strange after all!
Improvements in metrology
Quantum eraser
Coherent superposition
Pre and post-selection "paradoxes"
Others...

Others...

Those not arising in a restricted statistical classical theory

Bell inequality violations
Computational speed-up
Bell-Kochen-Specker theorem Certain aspects of items on the left Others...

Still surprising! Find more!

Focus on these

A research program

Speculative possibility for an axiomatization of quantum theory

Principle 1: There is a fundamental restriction on observers capacities to know and control the systems around them

Principle 2: ??? (Some change to the classical picture of the world)

Classical theory

Mechanics

Bits

Trits

Statistical theory for the classical theory

Liouville mechanics

Statistical theory of bits

Statistical theory of trits

Restricted Statistical theory for the classical theory

Restricted Liouville mechanics = Gaussian quantum mechanics

Restricted statistical theory of bits \simeq Stabilizer theory for qubits

Restricted statistical theory of trits = Stabilizer theory for qutrits

Classical theory

Mechanics

Bits

Trits

Statistical theory for the classical theory

Liouville mechanics

Statistical theory of bits

Statistical theory of trits

Restricted Statistical theory for the classical theory

Restricted Liouville mechanics = Quadrature quantum mechanics

Restricted statistical theory of bits \simeq Stabilizer theory for qubits

Restricted statistical theory of trits = Stabilizer theory for qutrits

Classical complementarity as a statistical restriction with broad applicability

Joint work with Olaf Schreiber

Building upon:
RS, quant-ph/0401052 [Phys. Rev. A 75, 032110 (2007)]
S. van Enk, arxiv:0705.2742 [Found. Phys. 37, 1447 (2007)]
D. Gross, quant-ph/0602001 [J. Math. Phys. 47, 122107 (2006)]
S. Bartlett, T. Rudolph, RS, unpublished

A fact about operational quantum theory:
Jointly-measurable observables = a commuting set of observables (relative to matrix commutator)

This suggests a restriction on a classical statistical theory:
Jointly-knowable variables $=$ a commuting set of variables (relative to Poisson bracket)

Continuous degrees of freedom

Configuration space: $\mathbb{R}^{n} \ni\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Phase space: - $\equiv \mathbb{R}^{2 n} \ni\left(x_{1}, p_{1}, x_{2}, p_{2}, \ldots, x_{n}, p_{n}\right) \equiv m$
Functionals on phase space: $F:-\rightarrow \mathbb{R}$

$$
\begin{aligned}
X_{k}(m) & =x_{k} \\
P_{k}(m) & =p_{k}
\end{aligned}
$$

Poisson bracket of functionals:
$[F, G](m) \equiv \sum_{i=1}^{n}\left(\frac{\partial F}{\partial X_{i}} \frac{\partial G}{\partial P_{i}}-\frac{\partial F}{\partial P_{i}} \frac{\partial G}{\partial X_{i}}\right)(m)$
The linear functionals / canonical variables are:
$F=a_{1} X_{1}+b_{1} P_{1}+\cdots+a_{n} X_{n}+b_{n} P_{n} \quad a_{1}, b_{1}, \ldots, a_{n}, b_{n} \in \mathbb{R}$
$G=c_{1} X_{1}+d_{1} P_{1}+\cdots+c_{n} X_{n}+d_{n} P_{n} \quad c_{1}, d_{1}, \ldots, c_{n}, d_{n} \in \mathbb{R}$
$[F, G](m) \equiv \sum_{i=1}^{n}\left(a_{i} d_{i}-b_{i} c_{i}\right) \quad$ Independent of m

Discrete degrees of freedom $\mathbb{Z}_{d}=\{0,1, \ldots, d-1\}$

Configuration space: $\left(\mathbb{Z}_{d}\right)^{n} \ni\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Phase space: - $\equiv\left(\mathbb{Z}_{d}\right)^{2 n} \ni\left(x_{1}, p_{1}, x_{2}, p_{2}, \ldots, x_{n}, p_{n}\right) \equiv m$
Functionals on phase space: $F:-\rightarrow \mathbb{Z}_{d}$

$$
\begin{aligned}
X_{k}(m) & =x_{k} \\
P_{k}(m) & =p_{k}
\end{aligned}
$$

Poisson bracket of functionals:

$$
\begin{aligned}
& {[F, G](m) \equiv \sum_{i=1}^{n}\left(F\left[m+e_{x_{i}}\right]-F[m]\right)\left(G\left[m+e_{p_{i}}\right]-G[m]\right)} \\
& -\left(F\left[m+e_{p_{i}}\right]-F[m]\right)\left(G\left[m+e_{q_{i}}\right]-G[m]\right)
\end{aligned}
$$

The linear functionals / canonical variables are:

$$
\begin{aligned}
& F=a_{1} X_{1}+b_{1} P_{1}+\cdots+a_{n} X_{n}+b_{n} P_{n} \quad a_{1}, b_{1}, \ldots, a_{n}, b_{n} \in \mathbb{Z}_{d} \\
& G=c_{1} X_{1}+d_{1} P_{1}+\cdots+c_{n} X_{n}+d_{n} P_{n} \quad c_{1}, d_{1}, \ldots, c_{n}, d_{n} \in \mathbb{Z}_{d} \\
& {[F, G](m)=\sum_{i=1}^{n}\left[F\left(e_{x_{i}}\right) G\left(e_{p_{i}}\right)-F\left(e_{p_{i}}\right) G\left(e_{x_{i}}\right)\right]} \\
& =\sum_{i=1}^{n}\left(a_{i} d_{i}-b_{i} c_{i}\right) \quad \text { Independent of } m
\end{aligned}
$$

A canonically conjugate pair $\quad[F, G]=1$

$$
\text { e.g. }\left\{X_{1}, P_{1}\right\},\left\{X_{2}, P_{2}\right\}, \text { and }\left\{X_{1}+X_{2}, P_{1}+P_{2}\right\}
$$

A commuting pair $[F, G]=0$

$$
\text { e.g. }\left\{X_{1}, X_{2}\right\},\left\{X_{1}, P_{2}\right\}, \text { and }\left\{X_{1}-X_{2}, P_{1}+P_{2}\right\}
$$

The principle of classical complementarity:
An observer can only have knowledge of the values of a commuting set of canonical variables and is maximally ignorant otherwise.

Symplectic geometry

Symplectic inner product $\omega:-\times-\rightarrow \mathbb{R}$
$\omega\left(m, m^{\prime}\right)=m^{T} J m^{\prime} \quad$ where $\quad J=\left(\begin{array}{cccccc}0 & -1 & & & \ldots \\ 1 & 0 & & & \cdots \\ & & 0 & -1 & \\ & & 1 & 0 & \\ : & & & & & \ldots\end{array}\right)$
$\omega\left(m, m^{\prime}\right)=\sum_{i}\left(q_{i} p_{i}^{\prime}-p_{i} q_{i}^{\prime}\right)$
The linear functionals
$F=\sum_{i}\left(a_{i} X_{i}+b_{i} P_{i}\right)$ form a dual space $\Omega^{*} \equiv(\mathbb{R})^{2 n} \ni\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)$
$\left\{X_{1}, P_{1}, \ldots, X_{n}, P_{n}\right\}$ is dual to $\left\{e_{x_{1}}, e_{p_{1}}, \ldots, e_{x_{n}}, e_{p_{n}}\right\}$

$$
\begin{gathered}
\omega(F, G)=\sum_{i=1}^{n}\left(a_{i} d_{i}-b_{i} c_{i}\right) \\
=[F, G]
\end{gathered}
$$

Poisson bracket of functionals $=$ symplectic inner product of vectors

Valid epistemic states:

These are specified by:
A set of known variables \mathcal{V}

$$
\forall F, G \in \mathcal{V}:[F, G]=0
$$

$$
\mathcal{V}=\left\{X_{1}, P_{2}\right\}
$$

A valuation of the known variables

$$
v: \mathcal{V} \rightarrow \mathbb{R}\left(\mathbb{Z}_{d}\right)
$$

$$
v\left(X_{1}\right)=2, v\left(P_{2}\right)=2
$$

Equivalently,
An isotropic subspace $V \subseteq \Omega^{*}$

$$
\forall F, G \in V: \omega(F, G)=0
$$

A valuation vector $v \in V \subseteq \Omega$

$$
v: \forall F \in V, \quad F^{T} v=v(F)
$$

The ontic states consistent with the epistemic state (V, v) are

$$
\begin{aligned}
& \{m \in-\mid \forall F \in \mathcal{V}: F(m)=v(F)\} \\
& =\left\{m \in-\mid \forall F \in V: F^{T} m=F^{T} v\right\} \\
& =\left\{m \in-\mid P_{V} m=v\right\} \\
& \equiv V^{\perp}+v
\end{aligned}
$$

(Dirac-delta / Kronecker delta)
The associated distribution is

$$
p_{V, v}(m)=\frac{1}{\mathcal{N}} \delta_{V^{\perp_{+}}}(m)
$$

Example

$\mathcal{V}=\left\{X_{1}, X_{2}\right\}$
$v\left(X_{1}\right)=1, v\left(X_{2}\right)=2$
$V^{\perp}+v=\left\{m \in-\mid X_{1}(m)=1, X_{2}(m)=2\right\}$ $=\{(1, s, 2, t) \mid s, t \in \mathbb{R}\}$
"Heisenberg picture" and "Schrodinger picture"

Valid reversible transformations:

Those that preserve the Poisson bracket / symplectic inner product: The group of symplectic affine transformations (Clifford group)

$$
\text { for } m \in \Omega
$$

$$
m \mapsto S m+a
$$

where $\quad[S u, S v]=[u, v]$ Symplectic

$$
\text { and } \quad a \in \Omega \quad \text { Affine (Heisenberg-Weyl) }
$$

Valid reproducible measurements:
Any commuting set of canonical variables

Restricted Liouville mechanics

$$
-=\mathbb{R}^{2 n}
$$

Valid epistemic states for a single degree of freedom

Valid epistemic states for a pair of degrees of freedom

Restricted statistical theory of trits

$$
-=\left(\mathbb{Z}_{3}\right)^{2 n}
$$

Valid epistemic states for a single trit

Canonical variables $a X+b P$
$X, \quad P, \quad X+P, \quad X-P(=X+2 P)$
P known

$X+P$ known

Nothing known

Valid epistemic states for a pair of trits
Canonical variables $a_{1} X_{1}+b_{1} P_{1}+a_{1} X_{2}+b_{2} P_{2} \quad a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{Z}_{3}$

How to represent this graphically

1 variable known

2 variables known

1 variable known

$$
X_{1}-X_{2} \text { known }
$$

$P_{1}+P_{2}$ known

$\underline{2}$ variables known

$$
X_{1}-X_{2} \text { and } P_{1}+P_{2} \text { known }
$$

Valid reproducible measurements

On a single trit

On a pair of trits

etc.

Restricted statistical theory of bits

$$
-=\left(\mathbb{Z}_{2}\right)^{2 n}
$$

A single bit

Canonical variables $\quad a X+b P \quad a, b \in \mathbb{Z}_{2}$

$$
X, \quad P, \quad X+P(=X-P)
$$

Epistemic states of maximal knowledge

Epistemic states of non-maximal knowledge
Nothing known

A pair of bits

Canonical variables $a_{1} X_{1}+b_{1} P_{1}+a_{1} X_{2}+b_{2} P_{2} \quad a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{Z}_{2}$

1 variable known

$\underline{2}$ variables known

2 variables known

$$
X_{1}-X_{2} \text { and } P_{1}+P_{2} \text { known }
$$

Equivalence of these restricted statistical theories to "subtheories" of quantum theory

Look to a representation of quantum theory on phase space - the Wigner representation

Restricted Liouville mechanics
 = Quadrature Quantum Mechanics

$$
-=\mathbb{R}^{2 n}
$$

Quadrature quantum mechanics

Hermitian operators: $\mathcal{F}: \mathcal{L}^{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{L}^{2}\left(\mathbb{R}^{n}\right)$
Commutator:

$$
[\widehat{F}, \widehat{G}] \equiv \widehat{F} \widehat{G}-\widehat{G} \widehat{F}
$$

The quadrature operators are:

$$
\widehat{F}=a_{1} \widehat{X}_{1}+b_{1} \widehat{P}_{1}+\cdots+a_{n} \widehat{X}_{n}+b_{n} \widehat{P}_{n} \quad a_{1}, b_{1}, \ldots, a_{n}, b_{n} \in \mathbb{R}
$$

Quadrature states are eigenstates of a commuting set of quadrature operators
Specified by an isotropic subspace V and a valuation vector $v \in V$
(Quadrature transformations and measurements take quadrature states to quadrature states)

Wigner representation of quantum mechanics

Weyl operator $\widehat{w}(m)=e^{-i \sum_{i} q_{i} \widehat{P}_{i}+p_{i} \widehat{X}_{i}}$
Quantum state ρ
Characteristic function $\quad \chi_{\rho}(m)=\operatorname{Tr}\left(\rho \widehat{w}(m)^{\dagger}\right)$
Wigner function $W_{\rho}(m)=\sum_{a} e^{-i[m, a]} \chi_{\rho}(m)$

For quadrature state associated with V, v
$W_{V, v}(m)=\frac{1}{\mathcal{N}} \delta_{V^{\perp}+v}(m)$

Equivalence of states implies equivalence of measurements and transformations Therefore

Theorem: Restricted statistical Liouville mechanics is empirically equivalent to quadrature quantum mechanics

Restricted statistical theory of trits
= Stabilizer theory for qutrits

$$
-=\left(\mathbb{Z}_{3}\right)^{2 n}
$$

Equivalence of states implies equivalence of measurements and transformations Therefore

Theorem: The restricted statistical theory of trits is empirically equivalent to the Stabilizer theory for qutrits

Restricted statistical theory of bits \simeq Stabilizer theory for qubits

$$
-=\left(\mathbb{Z}_{\mathbf{2}}\right)^{2 n}
$$

Analogously to what we did for trits, one can:
Define stabilizer theory for qubits Define Gross' discrete Wigner function for qubits

Find: Wigner function can be negative for qubit stabilizer states

The restricted statistical theory of bits is not equivalent but very close to the Stabilizer theory for qubits

Knowledge balance vs. classical complementarity

Contrast:
The principle of classical complementarity:
An observer can only have knowledge of the values of a commuting set of canonical variables and otherwise is maximally ignorant.

The knowledge-balance principle:
The only distributions that can be prepared are those that correspond to knowing at most half the information

From: RS, quant-ph/0401052 [Phys. Rev. A 75, 032110 (2007)]

The same epistemic states are found to be valid, but the logic is different...

Example:

Knowledge-balance principle:
It is forbidden by an assumption of locality and the existence of nontrivial measurements:

Principle of epistemic complementarity:
It is forbidden because it corresponds to

$$
X_{2}=0 \text { and } X_{1}+P_{2}=0 \text { but }\left[X_{2}, X_{1}+P_{2}\right] \neq 0
$$

What about applying knowledge-balance to trits?
(See S. van Enk, arxiv:0705.2742)

Valid epistemic states for a pair of systems are different!

Allowed by knowledge-balance, but corresponding to nothing in QM!

Long live Symplectic Structure!

Beyond classical complementarity: could a different statistical restriction get us closer to quantum theory?

NO for discrete degrees of freedom
Supplementing the unitary representation of the Clifford group with a single non-Clifford unitary yields all unitaries

YES for continuous degrees of freedom
In addition to rotations and displacements in phase space, one can add squeezing - one gets all the quadratic Hamiltonians
(Bartlett, Rudolph, Spekkens, unpublished)

The classical uncertainty principle:

The only Liouville distributions that can be prepared are those satisfying

$$
\gamma(\mu)+i \hbar J \geq 0
$$

and that have maximal entropy for a given set of second-order moments.

$$
\begin{aligned}
& \gamma(\mu)=2\left(\begin{array}{ccccc}
\Delta^{2} x_{1} & C_{x_{1}, p_{1}} & C_{x_{1}, x_{2}} & C_{x_{1}, p_{2}} & \ldots \\
C_{p_{1}, x_{1}} & \Delta^{2} p_{1} & C_{p_{1}, x_{2}} & C_{p_{1}, p_{2}} & \\
C_{x_{2}, x_{1}} & C_{x_{2}, p_{1}} & \Delta^{2} x_{2} & C_{x_{2}, p_{2}} & \\
C_{p_{2}, x_{1}} & C_{p_{2}, p_{1}} & C_{p_{2}, x_{2}} & \Delta^{2} p_{2} & \\
\vdots & & & & \ldots .
\end{array}\right) \\
& J=\left(\begin{array}{ccccc}
0 & -1 & & & \cdots \\
1 & 0 & & & \\
& & 0 & -1 & \\
\vdots & & 1 & 0 & \\
\vdots & & & & \cdots
\end{array}\right) \\
& \mu\left(x_{1}, p_{1}, x_{2}, p_{2}, \ldots\right)
\end{aligned}
$$

The theory is empirically equivalent to Gaussian quantum mechanics

Why the restricted statistical theory of bits

 Is not equivalent to qubit stabilizer theory

Even number of correlations

Qubit stabilizer theory is nonlocal and contextual (e.g. GHZ) Restricted statistical theory of bits is local and noncontextual

According to Knowledge-Balance
Valid epistemic states for a single system

Valid epistemic states for a pair of systems

Plus permutations of rows and columns

The same epistemic states are found to be valid, but the logic is different...

Example:

Knowledge-balance principle:
It is forbidden by an assumption of locality and the existence of nontrivial measurements:

Principle of epistemic complementarity:
It is forbidden because it corresponds to

$$
X_{2}=0 \text { and } X_{1}+P_{2}=0 \text { but }\left[X_{2}, X_{1}+P_{2}\right] \neq 0
$$

Are the two theories always equivalent?

What about applying knowledge-balance to trits?
(See S. van Enk, arxiv:0705.2742)
Valid epistemic states for a single system are the same
Valid epistemic states for a pair of systems are slightly different!

Ruled out by locality

$$
X_{1}-X_{2} \text { and } P_{1}-P_{2} \text { known }
$$

$$
\begin{array}{r}
22 \\
21 \\
\hline 20 \\
\hline 20 \\
\hline
\end{array} \mathrm{~F}
$$

Allowed by locality, but corresponding to nothing in QM!

Valid epistemic states for a pair of degrees of freedom

Quantum theory

How to represent this graphically

Uncorrelated pure epistemic states

Correlated pure epistemic states

$\mathrm{X} 1+\mathrm{X} 2=0$ $\mathrm{P} 1-\mathrm{P} 2=0$

$\mathrm{X} 1-\mathrm{P} 2=0$
P1-X2=0

$\mathrm{P} 1-\mathrm{X} 2=0$
X1-P1-P2=0

$\mathrm{P} 1+\mathrm{X} 2=0$
$\mathrm{X} 1+\mathrm{X} 2+\mathrm{P} 2=0$

$\mathrm{X} 1+\mathrm{X} 2=0$
$\mathrm{X} 1+\mathrm{P} 1-\mathrm{P} 2=0$

$\mathrm{X} 1-\mathrm{P} 2=0$
$\mathrm{P} 1-\mathrm{X} 2+\mathrm{P} 2=0$

$\mathrm{X} 1+\mathrm{P} 1-\mathrm{X} 2=0$
$\mathrm{X} 1-\mathrm{P} 1-\mathrm{X} 2-\mathrm{P} 2=0$

$\mathrm{X} 1+\mathrm{P} 1-\mathrm{P} 2=0$ $\mathrm{P} 1-\mathrm{X} 2+\mathrm{P} 2=0$

$\mathrm{X} 1+\mathrm{X} 2=0$ $\mathrm{X} 1-\mathrm{P} 1+\mathrm{P} 2=0$

$\mathrm{X} 1-\mathrm{P} 2=0$ P1-X2-P2=0

$\mathrm{X} 1-\mathrm{X} 2-\mathrm{P} 2=0$

$$
\mathrm{X} 1-\mathrm{P} 1+\mathrm{X} 2=0
$$

$\mathrm{X} 1+\mathrm{P} 1+\mathrm{P} 2=0$ P1-P2=0

$\mathrm{X} 1-\mathrm{X} 2=0$ $\mathrm{P} 1+\mathrm{P} 2=0$

$\mathrm{P} 1-\mathrm{X} 2=0$ $\mathrm{X} 1+\mathrm{P} 1-\mathrm{P} 2=0$

$\mathrm{X} 1+\mathrm{P} 2=0$
$\mathrm{P} 1+\mathrm{X} 2=0$

$\mathrm{P} 1+\mathrm{X} 2=0$
$\mathrm{X} 1+\mathrm{P} 1+\mathrm{P} 2=0$

X1-X2=0 X1-P1-P2=0

$\mathrm{X} 1+\mathrm{P} 1-\mathrm{X} 2=0$ $X 1+X 2-P 2=0$

$\mathrm{X} 1+\mathrm{P} 2=0$
$\mathrm{P} 1+\mathrm{X} 2+\mathrm{P} 2=0$

$\mathrm{P} 1+\mathrm{P} 2=0$
$\mathrm{X} 1-\mathrm{X} 2+\mathrm{P} 2=0$

$\mathrm{X} 1-\mathrm{X} 2=0$ $\mathrm{P} 1+\mathrm{X} 2+\mathrm{P} 2=0$

P1-P2=0
$\mathrm{X} 1-\mathrm{P} 1+\mathrm{X} 2=0$

$\mathrm{X} 1+\mathrm{P} 2=0$
$\mathrm{P} 1+\mathrm{X} 2-\mathrm{P} 2=0$

X1-P1-P2=0
P1-X2-P2=0

Valid reversible transformations

1 trit example:

2 trit example:
$X_{1} \mapsto X_{1}$
$P_{1} \mapsto P_{1}-P_{2}$
$X_{2} \mapsto X_{1}+X_{2}$
$P_{2} \mapsto P_{2}$

Valid reproducible measurements

On a single trit

On a pair of trits

etc.

Uncorrelated pure epistemic states

Correlated pure epistemic states

11	Nr\|cta
$\left(X_{1}, P_{1}\right) 10$	1 78
01	$1{ }^{1}$
00	S
00	2/ ${ }^{\text {ck }}$
	$\begin{gathered} \hline 00011011 \\ \left(X_{2}, P_{2}\right) \end{gathered}$

