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Motivation



Why study classical simulations?

� There is a lot we don’t know about the following problems:

What are the essential ingredients responsible for 

quantum computational power? 

Are quantum computers truly exponentially more powerful 

than classical ones?

Except quantum simulation, what would we actually do with 

a quantum computer if it were built?

� Two complementary routes towards understanding such questions:

Quantum algorithms Classical simulations
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Why probabilistic simulations?

� Quantum mechanics is probabilistic
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I.

Fundamental concepts



� Example: consider the following class of elementary quantum circuits:

� Let’s try to simulate this quantum circuit classically  -- but what do we 

really mean by ‘simulation’?

Classical simulation of QC
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Strong simulation

� Classical-simulation-definition-Nr. 1: STRONG SIMULATION

A quantum computation can be simulated classically if there 

exists a poly-time classical algorithm that computes                    

with high accuracy [say, up to m bits in poly(n, m) time]
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Strong simulation

� Classical-simulation-definition-Nr. 1: STRONG SIMULATION

A quantum computation can be simulated classically if there 

exists a poly-time classical algorithm that computes                    

with high accuracy [say, up to m bits in poly(n, m) time]

� Need to compute                       i.e. #P-complete  -- so this is an un-

simulatable circuit? 
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What’s the problem?

� Consider again                               followed by Z measurement. 

Q: How does this quantum computation allow to compute              ?

• Outcome in each run:  

• Repeat circuit + measurement N = poly(n) times, record outcome 

in each run and output

• Then c approximates                        with some accuracy   

• Best achievable accuracy  = 1/poly(n) due to Chernoff-Hoeffding bound 

[with exponentially small probability of failure]

A: approximate                   with at most polynomial accuracy    = 1/poly(n),

i.e. up to O(log n) bits
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Weak simulation

� Classical-simulation-definition-Nr. 2: WEAK SIMULATION

The computation                              can be simulated classically if 

there exists a classical algorithm that approximates 

with 1/poly(n) accuracy in poly-time [with exponentially small failure 

probability]

� Just generate N = poly(n) random bit strings xk and output                        
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Strong versus weak simulation

The strong approach    =   overdoing it a bit…



The strong approach    =   overdoing it a bit…

Strong versus weak simulation



Our work

� Develop new weak classical simulation algorithms

� Results:

• One main theorem

• Several applications

• Simulating quantum algorithms



II.

Main Theorem



CT states

� DEFINITION

An n-qubit state       is computationally tractable (CT) if 

(a) Given x, the coefficient          can be computed in poly-time

(b) It is possible to sample in poly-time from     
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CT states

� DEFINITION

An n-qubit state       is computationally tractable (CT) if 

(a) Given x, the coefficient          can be computed in poly-time

(b) It is possible to sample in poly-time from     

� Examples: most of existing  simulation results

• Product states, MPS, TTN, stabilizer states, Weighted graph states

• Standard basis inputs followed by matchgate circuits 

• Product inputs followed by Toffoli’s, QFT, log-depth  n.n. circuits, . . . 
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Overlaps of CT states

� PROPERTY:  If       and       are two CT states, then there exist an 

efficient classical algorithm to approximate          with 1/poly(n)

accuracy
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Overlaps of CT states

� PROPERTY:  If       and       are two CT states, then there exist an 

efficient classical algorithm to approximate          with 1/poly(n) 

accuracy

� Hint of proof:  
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CT States

� Other properties:

� PROPERTY: If       is a CT state and O is a d-local operator 

with d = O(log n), then  the expectation value              can be estimated 

efficiently with 1/poly accuracy. 

� PROPERTY: If       is a CT state and U is a poly-size circuit of Toffoli
and/or diagonal gates, then          is also CT. 

ψ
Oψ ψ

ψ
U ψ



Sparse operations

� An n-qubit operation is efficiently computable sparse (ECS) if

• Only poly(n) nonzero entries per row/column

• Given n-bit string x, it is possible to list all nonzero entries in row x 

in poly-time; similar for columns

� Examples: 

• Pauli products

• The standard Uf operator (where f is in P)

• A single d-qubit gate U⊗I with d = O(log n)
• Circuits of Toffoli + diagonal (+ adding a few non-toffoli’s)

• d-local Hamiltonians 



Main Theorem

� CT-THEOREM:  Let         be an n-qubit state, let U denote a poly-size 

circuit and let O denote an observable. If

(a)          is CT, and

(b)             is efficiently computable sparse (ECS),  

then the circuit can be simulated efficiently [in the weak sense!]
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III.

Applications



App. 1: Sparse circuits

� THEOREM:  Consider an n-qubit circuit U of m gates, each of which is 

ECS with sparseness s, acting on a product state and followed by Z 

measurement.  If sm = poly(n) then this circuit can be simulated 

classically.

[Proof:   product state is CT  +              is ECS, then use CT theorem]  

� Highlights distinction between entanglement and interference in 

quantum computation

†
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App. 2: “Unification”

� Consider a product input followed by poly-size circuit U that is one of 

the following, followed by Z measurement.

• Clifford circuit, possibly interspersed with few non-Cliffords

• Toffoli circuit -- i.e. “classical” computation

• Matchgate circuit

• Bounded-depth circuit

� All of the above cases can be simulated classically -- with very 

different methods!

� Product state is trivially CT  +  in all above cases,             is ECS

� CT-Theorem identifies common element in these classes
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App. 3: Composability

� Given two circuits U1 and U2 that can be simulated efficiently classically, 

when is the concatenated circuit U2U1 classically simulatable?

� Nontrivial question – cf. e.g Shor algorithm!
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IV.

Quantum algorithms



Example #1: 

Potts model q. algorithm



Potts model algorithm 

� Z = partition function of classical spin system e.g. Ising, Potts, …

� I. Arad & Z. Landau ‘08: quantum algorithm to  approximate Z/∆ with 

1/poly accuracy, where ∆ is easy-to-compute normalization

� VDN, Dür, Briegel ’07:                                                     = product state

Z/∆ =

=  stabilizer state

� Both states are CT states

And overlaps between CT states can be estimated with 1/poly accuracy 
classically in poly-time

� Hence, Potts model quantum algo can be simulated classically
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Example #2: 

Simon’s algorithm



Simon’s algorithm 

� SIMON’S PROBLEM: Consider oracle access to n-bit function f. It is 

promised that there exists a bit string a such that f(x) = f(y) if and 

only if x+y = a. Objective: find the string a.

� Classically O(2n/2) queries are required, quantum only O(n). 

The quantum circuit has very simple structure:
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Simon’s algorithm 
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Simon’s algorithm 
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Final step: classical postprocessing

Measure 1st register N=O(n) times, yielding N bit strings uk that are 
orthogonal to a. Then solving a simple system of linear equations yields a.



Simon’s algorithm 

� Where does the power of Simon’s algorithm originate?

� Let’s try to simulate such Simon-type circuits and see how far we get

� Here we focus on the -- somewhat surprising! – role of the last round 

i.e. classical post-processing



Simon’s algorithm 

� THEOREM:

If the function computed in the classical post-processing has a

sufficiently peaked Fourier spectrum, then the entire quantum 

computation is classically simulatable!

i.e. nontrivial interplay between FT and classical round is required to 

obtain exponential speed-up!



Conclusion

� Weak simulation yields new insights in simulation of QC

� We’ve only scratched the surface…

� See MVDN, arXiv:0911.1624

� Some advertising of new work:

Matchgate computations and linear threshold gates 

(MVDN, arXiv:1005.1143)

Thank you very much!
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� Doing the last round of classical computation coherently, Simon’s circuit 

can be  cast in the following form, followed by a single Z measurement

Simon’s algorithm 

N oracle(s) Classical 
postprocessing



� Doing the last round of classical computation coherently, Simon’s circuit 

can be  cast in the following form, followed by a single Z measurement

� After U1, the system is in a CT state

� Thus, if                   is ECS then entire computation is simulatable – but 

when does this happen?

Simon’s algorithm 
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Simon’s algorithm 

� PROPERTY:

Let g denote the function computed by U2.  Then the (x, y) element of      

equals  the x+y Fourier coefficient of g, i.e. 

� If g has poly(n) non-zero Fourier coefficients then                    is  

sparse

� Nontrivial: If g has poly(n) nonzero Fourier coefficients then                    

is  well-approximated by an operator that is efficiently computable 

sparse

[proof uses Kushilevitz-Mansour ’93 result on learning sparse Boolean 
functions]
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Strong versus weak simulation

� This gives an example of a class of quantum computations where

• From the point of view of strong simulation, these quantum circuits

are impossible to simulate classically (unless P = #P)

• From the point of view of weak simulation, they 

are trivial to simulate classically

� Note how elementary this class of quantum circuits is (coherent version 

of probabilistic classical computation)


