
Maarten Van den Nest

Max Planck institute for quantum optics

Garching, Germany Vancouver, July 2010

Simulating quantum computers with

probabilistic methods

Motivation

Why study classical simulations?

� There is a lot we don’t know about the following problems:

What are the essential ingredients responsible for

quantum computational power?

Are quantum computers truly exponentially more powerful

than classical ones?

Except quantum simulation, what would we actually do with

a quantum computer if it were built?

� Two complementary routes towards understanding such questions:

Quantum algorithms Classical simulations

Why study classical simulations?

� There is a lot we don’t know about the following problems:

What are the essential ingredients responsible for

quantum computational power?

Are quantum computers truly exponentially more powerful

than classical ones?

Except quantum simulation, what would we actually do with

a quantum computer if it were built?

� Two complementary routes towards understanding such questions:

Quantum algorithms Classical simulations

Why probabilistic simulations?

� Quantum mechanics is probabilistic

Outline

I. Fundamental concepts: what is classical simulation of QC?

II. Main result: class of simulatable quantum computations

III. Applications & examples

IV. Quantum algorithms

I.

Fundamental concepts

� Example: consider the following class of elementary quantum circuits:

� Let’s try to simulate this quantum circuit classically -- but what do we

really mean by ‘simulation’?

Classical simulation of QC

0

Uf

H

0

⋮

H

H

H

H

, ()out
x

x f xψ =∑

Strong simulation

� Classical-simulation-definition-Nr. 1: STRONG SIMULATION

A quantum computation can be simulated classically if there

exists a poly-time classical algorithm that computes

with high accuracy [say, up to m bits in poly(n, m) time]
out outZψ ψ

()2 (1)n f x
out out

x

Zψ ψ −= −∑

0

Uf

H

0

⋮

H

H

H

H

, ()out
x

x f xψ =∑

Strong simulation

� Classical-simulation-definition-Nr. 1: STRONG SIMULATION

A quantum computation can be simulated classically if there

exists a poly-time classical algorithm that computes

with high accuracy [say, up to m bits in poly(n, m) time]

� Need to compute i.e. #P-complete -- so this is an un-

simulatable circuit?

out outZψ ψ

()2 (1)n f x
out out

x

Zψ ψ −= −∑

0

Uf

H

0

⋮

H

H

H

H

{ }| : () 0 |x f x =

What’s the problem?

� Consider again followed by Z measurement.

Q: How does this quantum computation allow to compute ?

• Outcome in each run:

• Repeat circuit + measurement N = poly(n) times, record outcome

in each run and output

• Then c approximates with some accuracy

• Best achievable accuracy = 1/poly(n) due to Chernoff-Hoeffding bound

[with exponentially small probability of failure]

A: approximate with at most polynomial accuracy = 1/poly(n),

i.e. up to O(log n) bits

0 0
n n

outU ψ→ ≡

iz

1: i
i

c N z−= ∑

out outZψ ψ

ε

out outZψ ψ

{ }1, 1iz ∈ −

out outZψ ψ

Weak simulation

� Classical-simulation-definition-Nr. 2: WEAK SIMULATION

The computation can be simulated classically if

there exists a classical algorithm that approximates

with 1/poly(n) accuracy in poly-time [with exponentially small failure

probability]

� Just generate N = poly(n) random bit strings xk and output

0 0
n n

outU ψ→ ≡

out outZψ ψ

()2 (1)n f x
out out

x

Zψ ψ −= −∑

0

Uf

H

0

⋮

H

H

H

H

()1
: (1) kf x

k

c
N

= −∑

Strong versus weak simulation

The strong approach = overdoing it a bit…

The strong approach = overdoing it a bit…

Strong versus weak simulation

Our work

� Develop new weak classical simulation algorithms

� Results:

• One main theorem

• Several applications

• Simulating quantum algorithms

II.

Main Theorem

CT states

� DEFINITION

An n-qubit state is computationally tractable (CT) if

(a) Given x, the coefficient can be computed in poly-time

(b) It is possible to sample in poly-time from

ψ

x ψ

2
Prob()x x ψ=

CT states

� DEFINITION

An n-qubit state is computationally tractable (CT) if

(a) Given x, the coefficient can be computed in poly-time

(b) It is possible to sample in poly-time from

� Examples: most of existing simulation results

• Product states, MPS, TTN, stabilizer states, Weighted graph states

• Standard basis inputs followed by matchgate circuits

• Product inputs followed by Toffoli’s, QFT, log-depth n.n. circuits, . . .

ψ

x ψ

2
Prob()x x ψ=

Overlaps of CT states

� PROPERTY: If and are two CT states, then there exist an

efficient classical algorithm to approximate with 1/poly(n)

accuracy

ψ ϕ
ϕ ψ

Overlaps of CT states

� PROPERTY: If and are two CT states, then there exist an

efficient classical algorithm to approximate with 1/poly(n)

accuracy

� Hint of proof:

ψ ϕ
ϕ ψ

 x xϕ ψ ϕ ψ= ∑

() ()x x x xx xϕ ψ ϕδ εψ= +∑ ∑

()xδ = 1 If

0 otherwise

x xϕ ψ≥
1 ()()x xε δ= −

2
()

x
xx

x

ψ
δ

ϕ
ϕ

 =

∑ + [similar for]()xε

sample
Eff. Computable + bounded

CT States

� Other properties:

� PROPERTY: If is a CT state and O is a d-local operator

with d = O(log n), then the expectation value can be estimated

efficiently with 1/poly accuracy.

� PROPERTY: If is a CT state and U is a poly-size circuit of Toffoli
and/or diagonal gates, then is also CT.

ψ
Oψ ψ

ψ
U ψ

Sparse operations

� An n-qubit operation is efficiently computable sparse (ECS) if

• Only poly(n) nonzero entries per row/column

• Given n-bit string x, it is possible to list all nonzero entries in row x

in poly-time; similar for columns

� Examples:

• Pauli products

• The standard Uf operator (where f is in P)

• A single d-qubit gate U⊗I with d = O(log n)
• Circuits of Toffoli + diagonal (+ adding a few non-toffoli’s)

• d-local Hamiltonians

Main Theorem

� CT-THEOREM: Let be an n-qubit state, let U denote a poly-size

circuit and let O denote an observable. If

(a) is CT, and

(b) is efficiently computable sparse (ECS),

then the circuit can be simulated efficiently [in the weak sense!]

ψ

ψ

†U OU

III.

Applications

App. 1: Sparse circuits

� THEOREM: Consider an n-qubit circuit U of m gates, each of which is

ECS with sparseness s, acting on a product state and followed by Z

measurement. If sm = poly(n) then this circuit can be simulated

classically.

[Proof: product state is CT + is ECS, then use CT theorem]

� Highlights distinction between entanglement and interference in

quantum computation

†
1U Z U

App. 2: “Unification”

� Consider a product input followed by poly-size circuit U that is one of

the following, followed by Z measurement.

• Clifford circuit, possibly interspersed with few non-Cliffords

• Toffoli circuit -- i.e. “classical” computation

• Matchgate circuit

• Bounded-depth circuit

� All of the above cases can be simulated classically -- with very

different methods!

� Product state is trivially CT + in all above cases, is ECS

� CT-Theorem identifies common element in these classes

†U ZU

App. 3: Composability

� Given two circuits U1 and U2 that can be simulated efficiently classically,

when is the concatenated circuit U2U1 classically simulatable?

� Nontrivial question – cf. e.g Shor algorithm!

App. 3: Composability

� Given two circuits U1 and U2 that can be simulated efficiently classically,

when is the concatenated circuit U2U1 classically simulatable?

� Nontrivial question – cf. e.g Shor algorithm!

� CT-Theorem leads to classical simulation of concatenated circuits of

different types:

0

FOURIER

0

⋮ CLIFFORDLU SPARSE MATCHGATE

App. 3: Composability

� Given two circuits U1 and U2 that can be simulated efficiently classically,

when is the concatenated circuit U2U1 classically simulatable?

� Nontrivial question – cf. e.g Shor algorithm!

� CT-Theorem leads to classical simulation of concatenated circuits of

different types:

0

FOURIER

0

⋮ CLIFFORDLU SPARSE MATCHGATE

IV.

Quantum algorithms

Example #1:

Potts model q. algorithm

Potts model algorithm

� Z = partition function of classical spin system e.g. Ising, Potts, …

� I. Arad & Z. Landau ‘08: quantum algorithm to approximate Z/∆ with

1/poly accuracy, where ∆ is easy-to-compute normalization

� VDN, Dür, Briegel ’07: = product state

Z/∆ =

= stabilizer state

� Both states are CT states

And overlaps between CT states can be estimated with 1/poly accuracy
classically in poly-time

� Hence, Potts model quantum algo can be simulated classically

α ψ
α

ψ

Example #2:

Simon’s algorithm

Simon’s algorithm

� SIMON’S PROBLEM: Consider oracle access to n-bit function f. It is

promised that there exists a bit string a such that f(x) = f(y) if and

only if x+y = a. Objective: find the string a.

� Classically O(2n/2) queries are required, quantum only O(n).

The quantum circuit has very simple structure:

0

UfH

0

H⋮

Simon’s algorithm

0

UfH

0

H⋮

0
out u

u a

uψ ψ
=
∑
i

∼

Simon’s algorithm

0

UfH

0

H⋮

0
out u

u a

uψ ψ
=
∑
i

∼

Final step: classical postprocessing

Measure 1st register N=O(n) times, yielding N bit strings uk that are
orthogonal to a. Then solving a simple system of linear equations yields a.

Simon’s algorithm

� Where does the power of Simon’s algorithm originate?

� Let’s try to simulate such Simon-type circuits and see how far we get

� Here we focus on the -- somewhat surprising! – role of the last round

i.e. classical post-processing

Simon’s algorithm

� THEOREM:

If the function computed in the classical post-processing has a

sufficiently peaked Fourier spectrum, then the entire quantum

computation is classically simulatable!

i.e. nontrivial interplay between FT and classical round is required to

obtain exponential speed-up!

Conclusion

� Weak simulation yields new insights in simulation of QC

� We’ve only scratched the surface…

� See MVDN, arXiv:0911.1624

� Some advertising of new work:

Matchgate computations and linear threshold gates

(MVDN, arXiv:1005.1143)

Thank you very much!

0

PERMUTATION

U1

H

0

H PERMUTATION

U2

� Doing the last round of classical computation coherently, Simon’s circuit

can be cast in the following form, followed by a single Z measurement

Simon’s algorithm

N oracle(s) Classical
postprocessing

� Doing the last round of classical computation coherently, Simon’s circuit

can be cast in the following form, followed by a single Z measurement

� After U1, the system is in a CT state

� Thus, if is ECS then entire computation is simulatable – but

when does this happen?

Simon’s algorithm

0

PERMUTATION

U1

H

0

H PERMUTATION

U2

†
2 2HU ZU H

Simon’s algorithm

� PROPERTY:

Let g denote the function computed by U2. Then the (x, y) element of

equals the x+y Fourier coefficient of g, i.e.

� If g has poly(n) non-zero Fourier coefficients then is

sparse

� Nontrivial: If g has poly(n) nonzero Fourier coefficients then

is well-approximated by an operator that is efficiently computable

sparse

[proof uses Kushilevitz-Mansour ’93 result on learning sparse Boolean
functions]

†
2 2HU ZU H

() ()1
ˆ(1) ()

2

Tg u u x y
m u

g x y+ +− = +∑

†
2 2HU ZU H

†
2 2HU ZU H

Strong versus weak simulation

� This gives an example of a class of quantum computations where

• From the point of view of strong simulation, these quantum circuits

are impossible to simulate classically (unless P = #P)

• From the point of view of weak simulation, they

are trivial to simulate classically

� Note how elementary this class of quantum circuits is (coherent version

of probabilistic classical computation)

