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Motivation



Why study classical simulations?

Q Thereis a lot we don't know about the following problems:

What are the essential ingredients responsible for
quantum computational power?
Are quantum computers truly exponentially more powerful
than classical ones?
Except quantum simulation, what would we actually do with
a quantum computer if it were built?

O  Two complementary routes towards understanding such questions:

Quantum algorithms {—>  Classical simulations
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Why probabilistic simulations?

Q  Quantum mechanics is probabilistic



Outline

I. Fundamental concepts: what is classical simulation of QC?
IT. Main result: class of simulatable quantum computations
ITI. Applications & examples

IV. Quantum algorithms



I.

Fundamental concepts



Classical simulation of QC

O Example: consider the following class of elementary quantum circuits:
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O Let's try to simulate this quantum circuit classically -- but what do we
really mean by ‘simulation?



Strong simulation

O Classical-simulation-definition-Nr. 1: STRONG SIMULATION

A quantum computation can be simulated classically if there
exists a poly-time classical algorithm that computes (¢, |Z|¢..)
with high accuracy [say, up to m bits in poly(n, m) time]
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O Need to compute [{x:f(x)=0 | i.e. #P-complete -- so this is an un-
simulatable circuit?



What's the problem?

Q Consider again |0)" - U|0)" =|¢,,) followed by Z measurement.

Q: How does this quantum computation allow to compute (Yo |Z|¢os) ?

+ Outcome in each run: z 0{1,-3
Repeat circuit + measurement N = poly(n) times, record outcome Z
in each run and output c:= N_lz z
Then c approximates (Vo |Z|Wox) with some accuracy

Best achievable accuracy = 1/poly(n) due to Chernoff-Hoeffding bound
[with exponentially small probability of failure]

A: approximate (Vo |Z|¢o) with at most polynomial accuracy € = 1/poly(n),
i.e. up o O(log n) bits



Weak simulation

O Classical-simulation-definition-Nr. 2: WEAK SIMULATION

The computation |0)" ~ U |0)" =|¢,,) can be simulated classically if
there exists a classical algorithm that approximates (o) Z|Wou)

with 1/poly(n) accuracy in poly-time [with exponentially small failure
probability]
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O Just generate N = poly(n) random bit strings x, and output c::%Z(—l)”Xk)
k



Strong versus weak simulation

The strong approach = overdoing it a bit...



Strong versus weak simulation

The strong approach = overdoing it a bit...



Our work

O Develop new weak classical simulation algorithms

0 Results:
One main theorem
Several applications
Simulating quantum algorithms



IT.

Main Theorem



CT states

O DEFINITION
An n-qubit state|y) is computationally tractable (CT) if
(a) Given x, the coefficient (X|¢#) can be computed in poly-time

|2

(b) It is possible to sample in poly-time from Prob )= |<x|t,0>



CT states

O DEFINITION
An n-qubit state|y) is computationally tractable (CT) if
(a) Given x, the coefficient (x|¢/) can be computed in poly-time
(b) It is possible to sample in poly-time from Prob )= |<x|t,0>|2

O Examples: most of existing simulation results

Product states, MPS, TTN, stabilizer states, Weighted graph states
Standard basis inputs followed by matchgate circuits
Product inputs followed by Toffoli's, QFT, log-depth n.n. circuits, . ..



Overlaps of CT states

0O PROPERTY: If|y) and|@) are two CT states, then there exist an
efficient classical algorithm to approximate (¢|¢) with 1/poly(n)
accuracy



Overlaps of CT states

0O PROPERTY: If|y) and|@) are two CT states, then there exist an
efficient classical algorithm to approximate (¢|¢) with 1/poly(n)
accuracy

Q Hint of proof: J(X):{l If |(x|¢) z[(x|#)

£(X) =1-0(X)
O otherwise

(2le) = 2,001 {x¢)
= 281 (X|@) 309+ 3 {#|x){x|&) (x)

= Z‘ ¢‘ ‘ { X\ﬁ; 5(X)} + [similar for £(X) ]

sample \
Eff. Computable + bounded



CT States

[ Other properties:

O PROPERTY: If |¢) is a CT state and O is a d-local operator
with d = O(log n), then the expectation value (#|O|¥) can be estimated
efficiently with 1/poly accuracy.

O PROPERTY: If |¢) is a CT state and U is a poly-size circuit of Toffoli
and/or diagonal gates, thenU |y) is also CT.



Sparse operations

O An n-qubit operation is efficiently computable sparse (ECS) if

Only poly(n) nonzero entries per row/column
Given n-bit string x, it is possible to list all nonzero entries in row x
in poly-time; similar for columns

O Examples:

Pauli products

The standard U; operator (where f is in P)

A single d-qubit gate UOI with d = O(log n)

Circuits of Toffoli + diagonal (+ adding a few non-toffoli's)
d-local Hamiltonians



Main Theorem

O CT-THEOREM: Let |¢) be an n-qubit state, let U denote a poly-size
circuit and let O denote an observable. If

(@) |¢) isCT,and
(b) U'OU is efficiently computable sparse (ECS),

then the circuit can be simulated efficiently [in the weak sensel]



III.

Applications



App. 1: Sparse circuits

O THEOREM: Consider an n-qubit circuit U of m gates, each of which is
ECS with sparseness s, acting on a product state and followed by Z
measurement. If s™ = poly(n) then this circuit can be simulated
classically.

[Proof: product state is CT + U'ZU is ECS, then use CT theorem]
P 1

O Highlights distinction between entanglement and interference in
quantum computation



s W . . . "
App. 2: "Unification
Consider a product input followed by poly-size circuit U that is one of
the following, followed by Z measurement.
Clifford circuit, possibly interspersed with few non-Cliffords
Toffoli circuit -- i.e. "classical” computation
Matchgate circuit

Bounded-depth circuit

All of the above cases can be simulated classically -- with very
different methods!

Product state is trivially CT + inall above cases, U ZU is ECS

CT-Theorem identifies common element in these classes



App. 3: Composability

O Given two circuits U, and U, that can be simulated efficiently classically,
when is the concatenated circuit U,U; classically simulatable?

O Nonftrivial question - cf. e.g Shor algorithm!
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LU FOURIER SPARSE CLIFFORD MATCHGATE
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IV.

Quantum algorithms



Example #1.

Potts model q. algorithm



Potts model algorithm

Z = partition function of classical spin system e.qg. Ising, Potts, ...
I. Arad & Z. Landau '08: quantum algorithm to approximate Z/A with
1/poly accuracy, where A is easy-to-compute normalization

VDN, Diir, Briegel '07: ( |a) = product state
Z/0={aly) | <

[¢/) = stabilizer state
.
Both states are CT states

And overlaps between CT states can be estimated with 1/poly accuracy
classically in poly-time

Hence, Potts model quantum algo can be simulated classically



Example #2:

Simon's algorithm



Simon's algorithm

O SIMON'S PROBLEM: Consider oracle access to n-bit function f. It is
promised that there exists a bit string a such that f(x) = f(y) if and
only if x+y = a. Objective: find the string a.

QO Classically O(2"2) queries are required, quantum only O(n).
The quantum circuit has very simple structure:
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Simon's algorithm

Final step: classical postprocessing

Measure 1st register N=O(n) times, yielding N bit strings u, that are
orthogonal to a. Then solving a simple system of linear equations yields a.

Waw) = 2, [U))

uea=u

o F -
1 F 3%




Simon's algorithm

[ Where does the power of Simon’s algorithm originate?

O Let's try to simulate such Simon-type circuits and see how far we get

[ Here we focus on the -- somewhat surprising! - role of the last round
i.e. classical post-processing



Simon's algorithm

0 THEOREM:

If the function computed in the classical post-processing has a
sufficiently peaked Fourier spectrum, then the entire quantum
computation is classically simulatable!

i.e. nontrivial interplay between FT and classical round is required to
obtain exponential speed-up!



Conclusion

O Weak simulation yields new insights in simulation of QC
O We've only scratched the surface...

0 See MVDN, arXiv:0911.1624

O Some advertising of new work:
Matchgate computations and linear threshold gates
(MVDN, arXiv:1005.1143)

Thank you very much!






Simon'’s algorithm

[ Doing the last round of classical computation coherently, Simon's circuit
can be cast in the following form, followed by a single Z measurement

Tk ' i

_ H || PERMUTATION H | PERMUTATION =
] B U, B U,
S I / - / B
/ 4
N oracle(s) Classical

postprocessing



Simon's algorithm

[ Doing the last round of classical computation coherently, Simon's circuit
can be cast in the following form, followed by a single Z measurement

o T T -

H L PERMUTATION | _ H L PERMUTATION |

= B U, Bl B U,

Q After U, the system is ina CT state

Q Thus, if HU,'ZU,H is ECS then entire computation is simulatable - but
when does this happen?



Simon's algorithm

O PROPERTY:
Let g denote the function computed by U,. Then the (x, y) element of
HU,"ZU,H equals the x+y Fourier coefficient of g, i.e.

1 u)+u’ (x+ N
o 2 (T = g (x+ y)

Q If g has poly(n) non-zero Fourier coefficients then HU,'ZU,H is
sparse

QO Nontrivial: If g has poly(n) nonzero Fourier coefficients then HU,'ZU ,H
is well-approximated by an operator that is efficiently computable
sparse

[proof uses Kushilevitz-Mansour ‘93 result on learning sparse Boolean
functions]



Strong versus weak simulation

O This gives an example of a class of quantum computations where

From the point of view of strong simulation, these quantum circuits
are impossible to simulate classically (unless P = #P)

From the point of view of weak simulation, they
are trivial o simulate classically

0 Note how elementary this class of quantum circuits is (coherent version
of probabilistic classical computation)



