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Our setting

elementary cell

e 2D /3D: Nearest-neighbor translation-invariant interaction.

e High fault-tolerance threshold



Our setting

control

CNOT

target



Fault-tolerant quantum computation

Task:
e Maintain the quantum speedup in the presence of deco-
herence.

Solution:

Fault-tolerance theorem™: If for a universal quantum computer
the noise per elementary operation is below a constant non-
zero error threshold € then arbitrarily long quantum computa-
tions can be performed efficiently with arbitrary accuracy.

*: Aharonov & Ben-Or (1996), Kitaev (1997), Knill & Laflamme & Zurek
(1998), Aliferis & Gottesman & Preskill (2005)



Talk outline

1. Universal cluster state computation.
e [ he scheme: computation by local measurements

e Cluster states: creation, definition, experiment

2. General introduction to quantum error-correction

3. Making cluster state computation fault-tolerant



Part I:
Cluster state quantum computation



1.1 Cluster state quantum computation
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e Universal computational resource: cluster state.

e Information written onto the cluster, processed and
read out by one-qubit measurements only.

R. Raussendorf and H.J Briegel, PRL 86, 5188 (2001).



1.2 Cluster states - creation

on d-dimensional qubit

O 1
1. Prepare product state X 0)a + [1)a
acC \/§

lattice C.

2. Apply the Ising interaction for a fixed time T1':

9T @) ()
UIsing — € ’ h <Z’j> 9z 9z ’ Wlth

gT_7T
h 4

e Interaction time T independent of cluster size.



1.2 Cluster states - simple examples

2] [P)o = 10)1]+)2 +|1)1]—)2
Bell state
900 1Y)z = |4+)1]0)2|4+)3 + |—)1]1)2]—)3
GHZ-state
o000 91 = [OF)210)s s+ [0)sJaf1)al - +
+ |1)1]=)2]0)3|+)a + |1)1]+)2]|1)3]—)4

Number of terms exponential in number of qubits!



1.2 Cluster states - definition

A cluster state |¢)c on a cluster C is the single common eigenstate
of the stabilizer operators {K,},

Kalp)c = |¢)¢, Ya €C,
with

beN (a)

Therein, b € N(a) if a,b are spatial next neighbors in C.



1.2 Cluster states - experiment
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Cold atoms in optical The QCe with photons [3].

lattices [1,2]

1: Greiner, Mandel, Esslinger, Hansch, and Bloch, Nature 415, 39-44 (2002),
2: Greiner, Mandel, Hansch and Bloch, Nature, 419, 51-54 (2002).
3: P. Walther et al., Nature 434, 169 (2005).



Part II:

Introduction to quantum error correction

. take a break from cluster states



2.1 Quantum vs. classical bits

W)= 0/0)+p 1)

quantum bit

— Measurement affects state
— Set of states continuous

Despite the differences:

vh
1
0
s=1,0

classical bit

— Mmnt does not affect state
— Set of states discrete

e Quantum error-correction (QEC) is possible.
o QDEC is based on classical error correction.



2.2 Starting point: Classical EC

An example: the repitition code.

bit 1 2

encoded state O 0

0
erroneous states %
0

encoded state 1 1

N B P O

3

)  Individually read out all bits

&

0

0

1 .

) ) Perform majority vote

e Procedure on n-bit code corrects L%lj errors.

e Error-correction procedure learns encoded state.



2.2 Starting point: Classical EC

Same effect without state measurement: Read out parities only.

Parity check  code word
bit 1 2 3 Syndrome matrix W. errors

encoded state O O 0O D \ | /
01 0 (1) _ ( 110 ) 0

erroneous states % 01 1 1 0O 1 1 1

encoded state 1 1 11 D 0

e Syndrome only reveals error, not encoded state:
Sy(c) = 0, V codewords c.

Sy(E @ c) = Sy(F). (2)

[Learning the state is not crucial for classical error-correction.



2.3 How Quantum Error Correction works

Classical-to-quantum dictionary:

c € {000,111}
Errors: bit flip

Parity chgck matrix
(110)
O 1 1

Syndrome

[W) = «|000) + £]111)

spin & phase flips oz, oy, 02

stabilizer operators
21 Q Zp, 2o Q@ Z3

Measured eigenvalues of
stabilizer operators.



2.3 How Quantum Error Correction works

e Repeated measurement of the stabilizer operators, and con-
ditional correction.

e Correctable errors anti-commute with at least one stabilizer
operator — error-syndrome.

e Syndrome informs about an error, not the encoded state.



Emergence of the error threshold

/

infinite-size large code
code

—

small code

Residual error after correction

babilit
error threshold SrTor probabliity p

Fault-tolerance theorem: For a universal quantum computer,
an error per gate < e is effectively as good as zero error.




So far...

e Have explained the basics of quantum error-correction.

e Have ignored:
— Errors introduced by error-correction itself.

— Computation.

. but that can be fixed



Part III:

Fault-tolerant quantum computation with 3D cluster
states



Part III outline

3.1 Topological quantum error-correction with 3D cluster states

3.2 Topologocal quantum gates

3.3 Fault-tolerance threshold, overhead scaling, mapping to 2D



Known threshold values

no constraint geometric constraint
2D 1D

|| memm (0.03, est.
2] =107, est.
4

- -5
4] === 10 ", bd. [6] ===2-10, bd.

[7]=—10"", bd.

e Error sources:
|+)-Preparation, A(Z)-gates, Hadamard gates, measurement.

[1] Knill, (2005); [2] Zalka (1999); [3] Dawson & Nielsen (2005); [4] Aliferis & Gottesman &

Preskill (2005), [5] Raussendorf & Harrington, quant-ph/0610062; [6] Svore & DiVincenzo
& Terhal, quant-ph/0604090, [7] Aharonov & Ben-Or (1999)



Main idea

L_\“

3D cluster state = fault- Gates from non-trivial
tolerant substrate cluster topology




MacCcroscobnic view

singular qubit
(region §)

region J

— 3D cluster

dual defect

primal defect — (region D)

(region D)

T hree cluster regions:
V (Vacuum), D (Defect) and S (Singular qubits).

Qubits q € V. local X-measurements,
Qubits q € D: local Z-measurements,
Qubits q € S local measurements of X +Y.

R. Raussendorf, J. Harrington and K. Goyal, Ann. Phys. 321, 2242 (2006).



Microscopic view

qubit location:
qubit location:
syndrome location:

syndrome location:

e

cluster edges

*—
oA
0 1 )

elementary cell of L

(even, odd, odd) - face of L,
(odd, odd, even) - edge of L,
(odd, odd, odd) - cube of L,

(even, even, even) - site of L.



Lattice duality £ ——

Translation by vector (1,1,1)7:
e Cluster C invariant,
e L (primal) — £ (dual).

face of L — edge of L,

edge of £L — face of L,
site of L — cube of L,

cube of £L — site of L,

(3)

e Many objects in this scheme exist as ‘primal’ and ‘dual’.



Part III.1:
Quantum Error-correction in 3D cluster states




3.1 Measuring the cluster state stabilizer

X-measurement

/Z-measurement
K1 = X1Z073/2475

But ...



3.1 Measuring the cluster state stabilizer

X-measurement zé ;>

Z-measurement Ol 5
5| &7 Ky = X17573747s

AX1 Az2 Az3 Aza Azs = t1.
+1 +£1 41 £1 41

Measure eigenvalue of K1 by local measurements on qubits 1 - 5.

But ...



3.1 Measuring the cluster state stabilizer

X-measurement

Z-measurement

But ... all measurements in cluster region V are in the X-basis.

Are there stabilizer elements that we can measure by local X-
measurements only?

Criterion:

KJ — ® Xa.
acJ



3.1 Measuring the cluster state stabilizer

Criterion: Kj= QucjXa.

Such stabilizer elements exist!

X-measurement

Example:

X1XoX3X4X5Xe = K1 KoK3K4KsKg

Correlation of measured eigenvalues:

>‘X,1 >‘X,2 >‘X,3 >‘X,4 >‘X,5 >‘X,6 = +41, if no error.
+1 +£1 £1 +£1 £1 =1



3.1 Measuring the cluster state stabilizer

X-measurement

)‘X,1>‘X,2>‘X,3>‘X,4>‘X,5>‘X,6 = -1 indicates an error.

Error syndrome

e One bit of error syndrome per lattice cell.



3.1 Measuring the cluster state stabilizer

Z-error on face qubit vields
non-trivial syndrome on ad-
jacent cells.

non-trivial \/\—J

error syndrome  non-trivial
-1 error syndrome
-1

e Each error leaves characteristic signature in the syndrome.

e Identify error by that syndrome.



3.1 Geometry and topology

Error located on dual edge

multiple edges = chain
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Error syndrome
supported on
closed surface



3.1 Geometry and topology

error chain
€1

7 /

Error syndrome 1 Error syndrome 2

e An error chain Z(e) is detected by a syndrome Sy(f) if e
and f interesect an even number of times.

e Intersection number is a topological invariant.



3.1 Geometry and topology

error chain

equivalent

g
]i error chain 2

Error syndrome 1 Error syndrome 2

e Homologically equivalent error chains have same effect on
the computation:

er=¢e1 +0f — Z(er) = Z(ey).

e Only need to identify the homology class of the error.



3.1 Topological error-correction

< 3D cluster state

simulated time

e [opological error-correction in 3D cluster states described
by Random plaquette Z>-gauge model (RPGM) [1].

® FT quantum memory with toric code described by RPGM as well [1].

[1] Dennis et al., quant-ph/0110143 (2001).



3.1 Phase diagram of the RPGM

Map error correction to statistical mechanics:

I

A
T N
no EC Nishimori line

e EC Error correction [1]

Minimum weight

. / chain matching [2]

| —
3% P

e Have an error budget of 3%.

[1] T. Ohno et al., quant-ph/0401101 (2004). [2] E. Dennis et al., quant-ph/0110143
(2001); J. Edmonds, Canadian J. Math. 17, 449 (1965).



Part 1II.2:
Topological quantum gates



3.2 Encoded quantum gates

st A L

.:- . _ _ b :
[ M M Z-measurement
;,—N g 006 i |
b8 VVf-( e ber o090 @ @ cmoves qubit

4'1' _Cvmcothe 0(76‘ /{ from the cluster

e Local Z-measurements remove the qubits in region D from
the cluster.

e Remaining cluster has non-trivial topology.



3.2 Encoded quantum gates

(Vﬂ(/ﬂ/&ww

CNOT-gate

Surface perpendicular to “time” supports a quantum code



3.2 Surface codes

- code plane for surface code
|

rough edge
[ 1

smooth edge

hole

Plane segment Torus Plane with 2 holes

1 Qubit 2 Qubits 1 Qubit

e Storage capacity of the code depends upon the topology of
the code surface.



3.2 The surface code

One qubit located on every edge syndrome at endpoint
plaquette — Tz =3 harmless
stabilizer =1 3¢ Iy error
y - 7\ )-l
Bp \/
site stabilizer X% harmful
A Z-zzzzz aemzy ser
u
X

e Surface codes are stabilizer codes associated with 2D lattices.
e Only the homology class of an error chain matters.

A. Kitaev,quant-ph/9707021 (1997).



3.2 The surface code

syndrome at endpoint

S

harmful
error

Non-correctable error: small weight-distance away
from non-trivial cycle.



3.2 Surface code on plane with holes
site stabilizer not enforced 9&19(7
primal hole

/ — plaquette stabilizer not enforced ¥
/ { dual hole

NN

N

e [ here are two types of holes: primal and dual.

e A pair of same-type holes constitutes a qubit.



3.2 Surface code on plane with holes

Surface code with boundary:

primal qubit dual qubit

rough boundary smooth boundary

e X-chain cannot end in primal hole, can end in dual hole.

e /-chain can end in primal hole, cannot end in dual hole.



3.2 Encoded quantum gates

Defect D = worldline of hole.



3.2 Encoded quantum gates

(V%(/ﬂ/&ww

CNOT-gate

Topological quantum gates are encoded in the way
worldlines of primal and dual holes are braided.



3.2 A CNOT-gate

smooth boundary

e Propagation relation: X, — X.:® X;.

e Remaining prop rel Z. — Z., X+ — X4, Zt — Zeo Q Ly for
CNOT derived analogously.



3.2 Topological quantum gates

control

CNOT

target

t

Ou
Z-prep. ( ) Z-meas.
Out In
Out In



3.2 Universal gate set

e Need one non-Clifford element:
fault-tolerant preparation of |A) := X—\}%Y|A).

L
Encoding of |A).

e FT prep. of |A) provided through realization of magic state
distillation®.

*: S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).



Part 1II.3:
T hreshold and Overhead Scaling



3.3 Sequential cluster state creation

conveyor belt
for sequential

cluster state (@)
creation (@)
measurement
® o)
® o
® o
® © O O
® ©
e © © O
' o
depth d (@)
—g

How large or small can the depth d be?



3.3 Sequential cluster state creation

conveyor belt
for sequential
cluster state (@)
creation o
measurement
o
® o o
® o
How large? ¢ o SR
o ©
o ® ° o0
' o
depth d (e

Limitation:

e [emporal order of measurements — accumulating memory
error.



3.3 Sequential cluster state creation

conveyor belt
for sequential

cluster state (@)
creation (@)
measurement
o
e o o
® o
How small? ® o © O
o ©
o © ° 0
' o
depth d (e
—}

od>1.

- d = 1: mapping to circuit model, d > 2. cluster state.



3.3 Error model

e Locality: Errors are assocoated with the elementary gates
of a quantum computer. Errors act where the gates act.

e Independence: Errors associated with different gates are
stochastically independent.

e Probabilistic error-model: The elementary errors are prob-
abilistic Pauli-flips oz, oy, o> on all qubits.

All these assumptions can be relaxed.

Example: “Fault-tolerance with long-range correlated noise” (Dorit Aharonov,
Alexei Kitaev, John Preskill, Phys. Rev. Lett. 96 (2006) 050504)



3.3 Error Model

e Error sources:

2D (d=1) 3D (d > 2)
1. |+)-preparation 1. |+)-preparation
2. cPhase-gates 2. cPhase-gates
3. Hadamard-gates 3. Memory error
4. Local measurement 4. Local measurement

e Every quantum operation has same error p.

e Instant classical processing.



3.3 Fault-tolerance threshold

Topological threshold in cluster region V:

7.5 x 1073 (2D),

DPc

5
pe = 6.8x1073(3D). (5)

Purification threshold for fault-tolerant |A)-preparation:
pe = 3.7 x 1072, (6)

Topological EC sets the overall threshold.



3.3 Fault-tolerance threshold

0.92
0.9 |
0.88 |
0.86 |
0.84 |
0.82 |
0.8 |
0.78 |
0.76 |

0.007 0.0072 0.0074 0.0076 0.0078 0.008
error probability p

fidelity of error correction
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Numerical estimate of the fault-tolerance threshold in 2D.



3.3 Overhead and Robustness

e Denote by S (S’) the bare (encoded) size of a quantum cir-
cuit. Then, for the described method:

S’ ~ Slog3s. (7)

e [ he threshold is robust against variations in the error model
such as higher weight elemetary errors, long-distance errors.



3.3 Overhead in absolute terms

1011

101

10° [

108 |

107 [

Operational overhead (O3)

100 1

1 102 10 109 108 10% 1012
Number of gates (£2)

Operational cost of a fault-tolerant gate, at 1/3 threshold.



Summary

” control
| CNOT
‘ . target

e [ he 3D cluster state has error-correction built-in

e Encoded gates by topology
e High error threshold of 0.7%

Reading:
Raussendorf and Harrington, Phys. Rev. Lett. 98, 190504 (2007).
Raussendorf, Harrington and Goyal, New J. Phys. 9, 199 (2007).



