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Our setting

qubit

elementary cell

• 2D/3D: Nearest-neighbor translation-invariant interaction.

• High fault-tolerance threshold



Our setting



Fault-tolerant quantum computation

Task:

• Maintain the quantum speedup in the presence of deco-

herence.

Solution:

Fault-tolerance theorem∗: If for a universal quantum computer

the noise per elementary operation is below a constant non-

zero error threshold ε then arbitrarily long quantum computa-

tions can be performed efficiently with arbitrary accuracy.

*: Aharonov & Ben-Or (1996), Kitaev (1997), Knill & Laflamme & Zurek

(1998), Aliferis & Gottesman & Preskill (2005)



Talk outline

1. Universal cluster state computation.

• The scheme: computation by local measurements

• Cluster states: creation, definition, experiment

2. General introduction to quantum error-correction

3. Making cluster state computation fault-tolerant



Part I:

Cluster state quantum computation



1.1 Cluster state quantum computation

measurement of Z (�), X (↑), cosαX + sinαY (↗)

• Universal computational resource: cluster state.

• Information written onto the cluster, processed and

read out by one-qubit measurements only.

R. Raussendorf and H.J Briegel, PRL 86, 5188 (2001).



1.2 Cluster states - creation

1. Prepare product state
⊗
a∈C

|0〉a + |1〉a√
2

on d-dimensional qubit

lattice C.

2. Apply the Ising interaction for a fixed time T :

UIsing = e
−igTh̄

∑
〈i,j〉 σ

(i)
z σ

(j)
z , with

gT

h̄
=
π

4
.

• Interaction time T independent of cluster size.



1.2 Cluster states - simple examples

|ψ〉2 = |0〉1|+〉2 + |1〉1|−〉2
Bell state

|ψ〉3 = |+〉1|0〉2|+〉3 + |−〉1|1〉2|−〉3
GHZ-state

|ψ〉4 = |0〉1|+〉2|0〉3|+〉4 + |0〉1|−〉2|1〉3|−〉4 +
+ |1〉1|−〉2|0〉3|+〉4 + |1〉1|+〉2|1〉3|−〉4

Number of terms exponential in number of qubits!



1.2 Cluster states - definition

Z

Z

ZZ X

A cluster state |φ〉C on a cluster C is the single common eigenstate

of the stabilizer operators {Ka},

Ka|φ〉C = |φ〉C, ∀a ∈ C,

with

Ka = Xa
⊗

b∈N(a)

Zb, ∀a ∈ C. (1)

Therein, b ∈ N(a) if a,b are spatial next neighbors in C.



1.2 Cluster states - experiment

Cold atoms in optical

lattices [1,2]

The QCC with photons [3].

1: Greiner, Mandel, Esslinger, Hänsch, and Bloch, Nature 415, 39-44 (2002),

2: Greiner, Mandel, Hänsch and Bloch, Nature, 419, 51-54 (2002).

3: P. Walther et al., Nature 434, 169 (2005).



Part II:
Introduction to quantum error correction

... take a break from cluster states



2.1 Quantum vs. classical bits
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quantum bit classical bit

−Measurement affects state −Mmnt does not affect state

− Set of states continuous − Set of states discrete

Despite the differences:

• Quantum error-correction (QEC) is possible.

• QEC is based on classical error correction.



2.2 Starting point: Classical EC

An example: the repitition code.

encoded state 0

erroneous states

encoded state 1

0 0 0

0 1 0

0 1 1

1 1 1

bit   1     2     3

   Individually read out all bits

   Perform majority vote

   &

• Procedure on n-bit code corrects bn−1
2 c errors.

• Error-correction procedure learns encoded state.

If state measurement does not help in classical EC why bother
that it can’t be done in QEC?



2.2 Starting point: Classical EC

Same effect without state measurement: Read out parities only.

encoded state 0

erroneous states

encoded state 1

0 0 0

0 1 0

0 1 1

1 1 1

bit   1     2     3

0

1( )1

1( ) 1 1 0

0 1 1( )= 0

Syndrome
Parity check
     matrix

code word
 w. errors

• Syndrome only reveals error, not encoded state:

Sy(c) = 0, ∀ codewords c.

Sy(E ⊕ c) ≡ Sy(E). (2)

Learning the state is not crucial for classical error-correction.



2.3 How Quantum Error Correction works

Classical-to-quantum dictionary:

c ∈ {000,111} −→ |Ψ〉 = α|000〉+ β|111〉

Errors: bit flip −→ spin & phase flips σx, σy, σz

Parity check matrix︷ ︸︸ ︷(
1 1 0
0 1 1

)
−→

stabilizer operators

Z1 ⊗ Z2, Z2 ⊗ Z3

Syndrome −→ Measured eigenvalues of

stabilizer operators.



2.3 How Quantum Error Correction works

• Repeated measurement of the stabilizer operators, and con-

ditional correction.

• Correctable errors anti-commute with at least one stabilizer

operator → error-syndrome.

• Syndrome informs about an error, not the encoded state.



Emergence of the error threshold
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Fault-tolerance theorem: For a universal quantum computer,

an error per gate < ε is effectively as good as zero error.



So far...

• Have explained the basics of quantum error-correction.

• Have ignored:

– Errors introduced by error-correction itself.

– Computation.

... but that can be fixed



Part III:

Fault-tolerant quantum computation with 3D cluster
states



Part III outline

3.1 Topological quantum error-correction with 3D cluster states

3.2 Topologocal quantum gates

3.3 Fault-tolerance threshold, overhead scaling, mapping to 2D



Known threshold values
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• Error sources:
|+〉-Preparation, Λ(Z)-gates, Hadamard gates, measurement.

[1] Knill, (2005); [2] Zalka (1999); [3] Dawson & Nielsen (2005); [4] Aliferis & Gottesman &

Preskill (2005), [5] Raussendorf & Harrington, quant-ph/0610062; [6] Svore & DiVincenzo

& Terhal, quant-ph/0604090, [7] Aharonov & Ben-Or (1999)



Main idea

3D cluster state = fault-

tolerant substrate

Gates from non-trivial

cluster topology



Macroscopic view

Three cluster regions:
V (Vacuum), D (Defect) and S (Singular qubits).

Qubits q ∈ V : local X-measurements,
Qubits q ∈ D: local Z-measurements,
Qubits q ∈ S: local measurements of X ± Y .

R. Raussendorf, J. Harrington and K. Goyal, Ann. Phys. 321, 2242 (2006).



Microscopic view

0
1 20

1

2
z

x

cluster edges

elementary cell of L

qubit location: (even, odd, odd) - face of L,

qubit location: (odd, odd, even) - edge of L,

syndrome location: (odd, odd, odd) - cube of L,

syndrome location: (even, even, even) - site of L.



Lattice duality L ←→ L

Translation by vector (1,1,1)T :

• Cluster C invariant,

• L (primal) −→ L (dual).

face of L − edge of L,
edge of L − face of L,

site of L − cube of L,
cube of L − site of L,

(3)

• Many objects in this scheme exist as ‘primal’ and ‘dual’.



Part III.1:

Quantum Error-correction in 3D cluster states



3.1 Measuring the cluster state stabilizer

X Z

Z

Z

Z

X-measurement

Z-measurement
1

2

3

4

5 K1 = X1Z2Z3Z4Z5

But ...



3.1 Measuring the cluster state stabilizer

X Z

Z

Z

Z

X-measurement

Z-measurement
1

2

3

4

5 K1 = X1Z2Z3Z4Z5

λX,1 λZ,2 λZ,3 λZ,4 λZ,5 = +1.

±1 ±1 ±1 ±1 ±1

Measure eigenvalue of K1 by local measurements on qubits 1 - 5.

But ...



3.1 Measuring the cluster state stabilizer

X Z

Z

Z

Z

X-measurement

Z-measurement
1

2

3

4

5

But ... all measurements in cluster region V are in the X-basis.

Are there stabilizer elements that we can measure by local X-
measurements only?

Criterion:

KJ =
⊗
a∈J

Xa.



3.1 Measuring the cluster state stabilizer

Criterion: KJ =
⊗
a∈J Xa.

Such stabilizer elements exist!

Example:
X

X

X-measurement X

X
X

X

1

2

3
4

5

6

X1X2X3X4X5X6 = K1K2K3K4K5K6

Correlation of measured eigenvalues:

λX,1 λX,2 λX,3 λX,4 λX,5 λX,6 = +1, if no error.

±1 ±1 ±1 ±1 ±1 ±1



3.1 Measuring the cluster state stabilizer

X

X

X-measurement X

X
X

X

1

2

3
4

5

6

λX,1λX,2λX,3λX,4λX,5λX,6︸ ︷︷ ︸
Error syndrome

= -1 indicates an error.

• One bit of error syndrome per lattice cell.



3.1 Measuring the cluster state stabilizer

Error

    non-trivial
error syndrome
            -1

    non-trivial
error syndrome
            -1

Z-error on face qubit yields

non-trivial syndrome on ad-

jacent cells.

• Each error leaves characteristic signature in the syndrome.

• Identify error by that syndrome.



3.1 Geometry and topology

Error

Error syndrome
supported on 
closed surface

located on dual edge

multiple edges  =  chain



3.1 Geometry and topology

f f 
2 

e 1 
error chain 

Error syndrome 1 Error syndrome 2 
1 

• An error chain Z(e) is detected by a syndrome Sy(f) if e

and f interesect an even number of times.

• Intersection number is a topological invariant.



3.1 Geometry and topology

f f 
2 

e 1 

e 2 

f 

error chain 

equivalent 
error chain 

Error syndrome 1 Error syndrome 2 
1 

• Homologically equivalent error chains have same effect on

the computation:

e2 = e1 + ∂f −→ Z(e2) ≡ Z(e1).

• Only need to identify the homology class of the error.



3.1 Topological error-correction

• Topological error-correction in 3D cluster states described

by Random plaquette Z2-gauge model (RPGM) [1].

• FT quantum memory with toric code described by RPGM as well [1].

[1] Dennis et al., quant-ph/0110143 (2001).



3.1 Phase diagram of the RPGM

Map error correction to statistical mechanics:

EC

no EC Nishimori line

p

T

optimal
Error correction [1]

Minimum weight
chain matching [2]

3%

• Have an error budget of 3%.

[1] T. Ohno et al., quant-ph/0401101 (2004). [2] E. Dennis et al., quant-ph/0110143

(2001); J. Edmonds, Canadian J. Math. 17, 449 (1965).



Part III.2:

Topological quantum gates



3.2 Encoded quantum gates

Z-measurement

removes qubit
from the cluster

• Local Z-measurements remove the qubits in region D from

the cluster.

• Remaining cluster has non-trivial topology.



3.2 Encoded quantum gates

Surface perpendicular to “time” supports a quantum code



3.2 Surface codes

• Storage capacity of the code depends upon the topology of
the code surface.



3.2 The surface code

harmless
error

syndrome at endpoint

harmful
error

Z
ZZ

X
X

X
X

Z ZZZ ZZ ZZ

Z
X
X
X
X
X
X
X

X

X

Z =

=

plaquette
stabilizer

site stabilizer

One qubit located on every edge

Z

X

As

Bp

|ψ〉 = As|ψ〉 = Bp|ψ〉, ∀|ψ〉 ∈ HC, ∀s, p. (4)

• Surface codes are stabilizer codes associated with 2D lattices.

• Only the homology class of an error chain matters.

A. Kitaev,quant-ph/9707021 (1997).



3.2 The surface code

syndrome at endpoint

harmful
error

Non-correctable error: small weight-distance away

from non-trivial cycle.



3.2 Surface code on plane with holes

site stabilizer not enforced
X

X
X

X

plaquette stabilizer not enforced
Z

Z
Z

Z
dual hole

primal hole

• There are two types of holes: primal and dual.

• A pair of same-type holes constitutes a qubit.



3.2 Surface code on plane with holes

Surface code with boundary:

dual
hole

dual
hole

rough boundary

Zd

Xd

primal
 hole

primal
 hole

smooth boundary

XXpp

Zp

primal qubit dual qubit

• X-chain cannot end in primal hole, can end in dual hole.

• Z-chain can end in primal hole, cannot end in dual hole.



3.2 Encoded quantum gates

Defect D = worldline of hole.



3.2 Encoded quantum gates

Topological quantum gates are encoded in the way
worldlines of primal and dual holes are braided.



3.2 A CNOT-gate

Xt

X

X

c

c

dual
hole

dual
hole

rough boundary

Zd

Xd

primal
 hole

primal
 hole

smooth boundary

XXpp

Zp

primal qubit dual qubit

• Propagation relation: Xc −→ Xc ⊗Xt.

• Remaining prop rel Zc → Zc, Xt → Xt, Zt → Zc ⊗ Zt for

CNOT derived analogously.



3.2 Topological quantum gates



3.2 Universal gate set

• Need one non-Clifford element:

fault-tolerant preparation of |A〉 := X+Y√
2
|A〉.

Encoding of |A〉.

• FT prep. of |A〉 provided through realization of magic state

distillation∗.

*: S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).



Part III.3:

Threshold and Overhead Scaling



3.3 Sequential cluster state creation

measurement

conveyor belt
for sequential
cluster state
creation

depth d

How large or small can the depth d be?



3.3 Sequential cluster state creation

How large?

measurement

conveyor belt
for sequential
cluster state
creation

depth d

Limitation:

• Temporal order of measurements −→ accumulating memory
error.



3.3 Sequential cluster state creation

How small?

measurement

conveyor belt
for sequential
cluster state
creation

depth d

• d ≥ 1.

- d = 1: mapping to circuit model, d ≥ 2: cluster state.



3.3 Error model

• Locality: Errors are assocoated with the elementary gates

of a quantum computer. Errors act where the gates act.

• Independence: Errors associated with different gates are

stochastically independent.

• Probabilistic error-model: The elementary errors are prob-

abilistic Pauli-flips σx, σy, σz on all qubits.

All these assumptions can be relaxed.

Example: “Fault-tolerance with long-range correlated noise” (Dorit Aharonov,

Alexei Kitaev, John Preskill, Phys. Rev. Lett. 96 (2006) 050504)



3.3 Error Model

• Error sources:

2D (d = 1) 3D (d ≥ 2)

1. |+〉-preparation

2. cPhase-gates

3. Hadamard-gates

4. Local measurement

1. |+〉-preparation

2. cPhase-gates

3. Memory error

4. Local measurement

• Every quantum operation has same error p.

• Instant classical processing.



3.3 Fault-tolerance threshold

Topological threshold in cluster region V :

pc = 7.5× 10−3 (2D),

pc = 6.8× 10−3 (3D).
(5)

Purification threshold for fault-tolerant |A〉-preparation:

pc = 3.7× 10−2. (6)

Topological EC sets the overall threshold.



3.3 Fault-tolerance threshold
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Numerical estimate of the fault-tolerance threshold in 2D.



3.3 Overhead and Robustness

• Denote by S (S′) the bare (encoded) size of a quantum cir-

cuit. Then, for the described method:

S′ ∼ S log3 S. (7)

• The threshold is robust against variations in the error model

such as higher weight elemetary errors, long-distance errors.



3.3 Overhead in absolute terms

Operational cost of a fault-tolerant gate, at 1/3 threshold.



Summary

• The 3D cluster state has error-correction built-in

• Encoded gates by topology

• High error threshold of 0.7%

Reading:

Raussendorf and Harrington, Phys. Rev. Lett. 98, 190504 (2007).

Raussendorf, Harrington and Goyal, New J. Phys. 9, 199 (2007).


