Measurement-based quantum computation

I Oth Canadian Summer School on Ql

Dan Browne

Dept. of Physics and Astronomy
University College London

What is a quantum computer?

The one-way quantum computer

A multi-qubit entangled
"resource state"
E.g. cluster state

Single-qubit measurements

Choice of bases specify computation

Adaptive (some bases depend upon previous outcomes)
$=$ A universal quantum computer

Overview of Lectures

* I. Cluster states and graph states I
* What are they? Basic properties.
* 2.The one-way quantum computer
* What is the model? How does it work?
* 3. Cluster states and graph states II
* Stabilizer formalism and graphical representation
* 4. Cluster states and graph states III
* How do we build them?
* 5. Beyond cluster states (If time permits)
* (other models of MBQC)
* 6. (Robert Raussendorf) Fault tolerant MBQC

Pauli group and Clifford Group

- Pauli group: \mathbb{P}_{n}
- Set of all n-fold tensor products of $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ and \mathbf{I}, with pre-factors $\mathbf{+ I},-\mathbf{I} .+\mathbf{+ i},-\mathbf{i}$ for group closure.
- Clifford group:
- "Normalizer" of \mathbb{P}_{n}

Set of unitaries C such that
$\forall \sigma_{k} \in \mathbb{P}_{n}$

$$
C \sigma_{k} C^{\dagger}=\sigma_{j} \quad \sigma_{j} \in \mathbb{P}_{n}
$$

Equiv,:

$$
C \sigma_{k}=\sigma_{j} C=\left(C \sigma_{k} C \dagger\right) C
$$

"Maps Pauli group onto Pauli group"

2-qubit gates and universal q.c.

2-qubit gates and universal q.c.

$-\boxed{J}-\sqrt{J}-\sqrt{J}-$

2-qubit gates and universal q.c.

$-\boxed{J}-\sqrt{J}-\sqrt{J}-$

Etching with z measurements

FIG. 1. Quantum computation by measuring two-state particles on a lattice. Before the measurements the qubits are in the cluster state $|\Phi\rangle_{C}$ of (1). Circles \odot symbolize measurements of σ_{z}, vertical arrows are measurements of σ_{x}, while tilted arrows refer to measurements in the $x-y$ plane.

- Figure I in H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 5 I 88 (200I)

Measurement-patterns for gates in the one-way model

(a) | | | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 7 | | | | | | |
| control | X | Y | Y | Y | Y | Y | O |
| target | X | X | X | Y | X | X | O |
| | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

(b)

general rotation
(d)
(c)
z-rotation
(e)

$$
\begin{aligned}
& \begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5
\end{array} \\
& \text { X Y Y Y O X X Y X } \\
& \text { Hadamard-gate } \\
& \pi / 2 \text {-phase gate }
\end{aligned}
$$

LC-orbit of local Clifford equivalent states

Fig. 4. - An example for a successive application of the LC-rule, which exhibits the whole equivalence class associated with graph No. 1. The rule is successively applied to the vertex, which is colored red in the figure.

- Figure 4 in M. Hein,W. Dür, J. Eisert, R. Raussendorf, M.Van den Nest, H.-J. Briegel, quant-ph/0602096 (Varena lectures)

Counter-example to LU-LC conjecture

The two graphs (with / without the red edge) represent locally equivalent states, but are not related by the LC rule.
Zhengfeng Ji et al, Quantum Inf. Comput.,Vol. I0, No. I\&2, 97-I08, 20 IO

Universal resources derived via graphical rules

Hexagonal

Triangular

Kagome

Square

These regular graphs can all be mapped into square lattices via Pauli measurements - using the graphical rules. Hence all are resources for universal MBQC.
M.Van den Nest, et al, New J. Phys. 9204 (2007).

Universal resources derived via graphical rules

Hexagonal

Triangular

Kagome

Square

These regular graphs can all be mapped into square lattices via Pauli measurements - using the graphical rules. Hence all are resources for universal MBQC.
M.Van den Nest, et al, New J. Phys. 9204 (2007).

Measurement-patterns for gates in the one-way model

R. Raussendorf, D. E. Browne and H.J. Briegel, Phys. Rev. A 68: 022312 (2003)

Graphical "Gottesman-Knill Theorem"

Quantum Fourier Transform

Standard-form
measurement pattern

Graph state after all Pauli measurements performed
M. Hein, J. Eisert and H.J. Briegel, Phys. Rev. A 69, 0623II (2004)

Valence bond PEPS to MPS

"Virtual Qudit pairs"

$$
\sum_{n=1}^{d}|n\rangle|n\rangle
$$

PEPS "projector"

$$
\sum_{j=1}^{D} \sum_{p, q=1}^{d} A_{p, q}^{j}|j\rangle\langle\langle |\langle q|
$$

$$
M(j)_{m, n}=A_{p, q}^{j}
$$

Constructs a Matrix Product State MPS

$$
|\psi\rangle=\sum \operatorname{Tr}\left[M\left(s_{1}\right) M\left(s_{2}\right) \ldots M\left(s_{n}\right)\right]\left|s_{1}\right\rangle\left|s_{2}\right\rangle \cdots\left|s_{n}\right\rangle
$$

References

- Progress Review
- H.J. Briegel, D. E. Browne,W. Dür, R. Raussendorf, M.Van den Nest, Nature Physics 5 I, I9-26 (2009)
- Tutorials
- M. Hein,W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H.-J. Briegel, quant-ph/0602096 (Varena lectures on graph states)
- D. E. Browne and H.J. Briegel, quant-ph/0603226
- M.A. Nielsen, quant-ph/0504097
- And many more...
- Search arxiv for One-way, MBQC, Cluster States, Graph States,

