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The one-way quantum computer

A multi-qubit entangled 
“resource state”
E.g. cluster state

Single-qubit 
measurements

Choice of bases specify
computation

Adaptive (some bases depend 
upon previous outcomes)

+

= A universal quantum computer
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Overview of Lectures
★ 1. Cluster states and graph states I

★ What are they? Basic properties.

★ 2. The one-way quantum computer

★ What is the model? How does it work?

★ 3. Cluster states and graph states II

★ Stabilizer formalism and graphical representation

★ 4.  Cluster states and graph states III

★ How do we build them?

★ 5. Beyond cluster states (If time permits)

★ (other models of MBQC)

★ 6. (Robert Raussendorf) Fault tolerant MBQC
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Pauli group and Clifford Group

• Pauli group: 

• Set of all n-fold tensor products of X, Y, Z and I, 
with pre-factors +1, -1. +i, -i for group closure.

• Clifford group:

• “Normalizer” of 
Set of unitaries C such that 

Equiv,:

“Maps Pauli group onto Pauli group”

n

n

CσkC† = σj∀σk ∈ n σj ∈ n

Cσk = σjC = (CσkC†)C
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2-qubit gates and universal q.c.
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Etching with z measurements

VOLUME 86, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 28 MAY 2001

A One-Way Quantum Computer

Robert Raussendorf and Hans J. Briegel
Theoretische Physik, Ludwig-Maximilians-Universität München, Germany

(Received 25 October 2000)

We present a scheme of quantum computation that consists entirely of one-qubit measurements on a
particular class of entangled states, the cluster states. The measurements are used to imprint a quantum
logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus
one-way quantum computers and the measurements form the program.

DOI: 10.1103/PhysRevLett.86.5188 PACS numbers: 03.67.Lx, 03.65.Ud

A quantum computer promises efficient processing of
certain computational tasks that are intractable with clas-
sical computer technology [1]. While basic principles of a
quantum computer have been demonstrated in the labora-
tory [2], scalability of these systems to a large number of
qubits [3], essential for practical applications such as the
Shor algorithm, represents a formidable challenge. Most
of the current experiments are designed to implement se-
quences of highly controlled interactions between selected
particles (qubits), thereby following models of a quan-
tum computer as a (sequential) network of quantum logic
gates [4,5].

Here we propose a different model of a scalable quan-
tum computer. In our model, the entire resource for the
quantum computation is provided initially in the form of
a specific entangled state (a so-called cluster state [6]) of
a large number of qubits. Information is then written onto
the cluster, processed, and read out from the cluster by
one-particle measurements only. The entangled state of
the cluster thereby serves as a universal “substrate” for any
quantum computation. Cluster states can be created effi-
ciently in any system with a quantum Ising-type interaction
(at very low temperatures) between two-state particles in
a lattice configuration.

We consider two- and three-dimensional arrays of
qubits that interact via an Ising-type next-neighbor in-
teraction [6] described by a Hamiltonian Hint ! g!t" 3
P

#a,a0$
11s

!a"
z

2
12s

!a0"
z

2 % 2 1
4g!t"

P
#a,a0$ s!a"

z s!a0"
z [7] whose

strength g!t" can be controlled externally. A possible
realization of such a system is discussed below. A qubit at
site a can be in two states j0$a & j0$z,a or j1$a & j1$z,a,
the eigenstates of the Pauli phase flip operator s!a"

z
's!a"

z ji$a ! !21"iji$a(. These two states form the compu-
tational basis. Each qubit can equally be in an arbitrary
superposition state aj0$ 1 bj1$, jaj2 1 jbj2 ! 1. For
our purpose, we initially prepare all qubits in the su-
perposition j1$ ! !j0$ 1 j1$")

p
2, an eigenstate of the

Pauli spin flip operator sx 'sxj6$ ! 6j6$(. Hint is
then switched on for an appropriately chosen finite time
interval T , where

RT
0 dt g!t" ! p, by which a unitary

transformation S is realized. Since Hint acts uniformly on
the lattice, entire clusters of neighboring particles become
entangled in one single step. The quantum state jF$C ,

the state of a cluster !C " of neighboring qubits, which is
thereby created provides in advance all entanglement that
is involved in the subsequent quantum computation. It has
been shown [6] that the cluster state jF$C is characterized
by a set of eigenvalue equations

s!a"
x

O

a0[ngbh!a"
s!a0"

z jF$C ! 6jF$C , (1)

where ngbh!a" specifies the sites of all qubits that inter-
act with the qubit at site a [ C . The eigenvalues are de-
termined by the distribution of the qubits on the lattice.
The equations (1) are central for the proposed computation
scheme. As an example, a measurement on an individual
qubit of a cluster has a random outcome. On the other
hand, Eqs. (1) imply that any two qubits at sites a, a0 [ C
can be projected into a Bell state by measuring a subset of
the other qubits in the cluster. This property will be used to
define quantum channels that allow us to propagate quan-
tum information through a cluster.

We show that a cluster state jF$C can be used as a sub-
strate on which any quantum circuit can be imprinted by
one-qubit measurements. In Fig. 1 this scheme is illus-
trated. For simplicity, we assume that in a certain region
of the lattice each site is occupied by a qubit. This re-
quirement is not essential as will be explained below [see
(d)]. In the first step of the computation, a subset of
qubits is measured in the basis of sz which effectively
removes them. In Fig. 1 these qubits are denoted by “ Ø.”

quantum gate

information flow

FIG. 1. Quantum computation by measuring two-state parti-
cles on a lattice. Before the measurements the qubits are in the
cluster state jF$C of (1). Circles Ø symbolize measurements of
sz , vertical arrows are measurements of sx , while tilted arrows
refer to measurements in the x-y plane.

5188 0031-9007)01)86(22))5188(4)$15.00 © 2001 The American Physical Society• Figure 1in H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 
86, 5188 (2001)

z-measurements

“quantum wire”
for logical single

qubit
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Measurement-patterns for gates in the one-way model

5

B. A universal set of quantum gates

To provide something definite to discuss right from the
beginning, we now give the procedures of how to realize
a CNOT-gate and a general one-qubit rotation via one-
qubit measurements on a cluster state. The explanation
of why and how these gates work will be given in Sec-
tion II G.

(a)

1 2 3 4 5 6 7

9 10 11 12 13 14 15

8
control

target

Y Y Y Y Y

Y

Y XXX X

X

X

CNOT-gate

(b)

1 2 3 4 5
_X !_+ "+#+_

(c)

1 2 3 4 5
X X X+#_

general rotation z-rotation

(d)

1 2 3 4 5
X YY Y

(e)

1 2 3 4 5
X X XY

Hadamard-gate π/2-phase gate

FIG. 2: Realization of elementary quantum gates on the QCC.
Each square represents a lattice qubit. The squares in the
extreme left column marked with white circles denote the in-
put qubits, those in the right-most column denote the output
qubits.

A CNOT-gate can be realized on a cluster state of 15
qubits, as shown in Fig. 2. All measurements can be
performed simultaneously. The procedure to realize a
CNOT-gate on a cluster with 15 qubits as displayed in
Fig. 2 is

Procedure 1 Realization of a CNOT-gate acting on a
two-qubit state |ψin〉.

1. Prepare the state

|Ψin〉C15 = |ψin〉1,9 ⊗
(
⊗

i∈C15\{1,9} |+〉i
)

.

2. Entangle the 15 qubits of the cluster C15 via the
unitary operation S(C15).

3. Measure all qubits of C15 except for the output
qubits 7, 15 (following the labeling in Fig. 2). The
measurements can be performed simultaneously.
Qubits 1, 9, 10, 11, 13, 14 are measured in the σx-
eigenbasis and qubits 2-6, 8, 12 in the σy-eigenbasis.

Dependent on the measurement results, the following
gate is thereby realized:

U ′
CNOT = UΣ,CNOT CNOT (c, t). (23)

Therein the byproduct operator UΣ,CNOT has the form

UΣ,CNOT = σ(c)
x

γ(c)
x

σ(t)
x

γ(t)
x

σ(c)
z

γ(c)
z

σ(t)
z

γ(t)
z

, with

γ(c)
x = s2 + s3 + s5 + s6

γ(t)
x = s2 + s3 + s8 + s10 + s12 + s14

γ(c)
z = s1 + s3 + s4 + s5 + s8 + s9 + s11 + 1

γ(t)
z = s9 + s11 + s13.

(24)
Therein, the si represent the measurement outcomes si

on the qubits i. The expression (24) is modified if re-
dundant cluster qubits are present and/or if the cluster
state on which the CNOT gate is realized is specified by
a set {κa} different from (12), see Section II C. This con-
cludes the presentation of the CNOT gate, the proof of
its functioning is given in Section II G.

An arbitrary rotation URot ∈ SU(2) can be realized
on a chain of 5 qubits. Consider a rotation in its Euler
representation

URot[ξ, η, ζ] = Ux[ζ]Uz[η]Ux[ξ], (25)

where the rotations about the x- and z-axis are

Ux[α] = exp
(

−iα
σx

2

)

Uz[α] = exp
(

−iα
σz

2

)

.
(26)

Initially, the first qubit is prepared in some state |ψin〉,
which is to be rotated, and the other qubits are prepared
in |+〉. After the 5 qubits are entangled by the unitary
transformation S, the state |ψin〉 can be rotated by mea-
suring qubits 1 to 4. At the same time, the state is also
swapped to site 5. The qubits 1 .. 4 are measured in ap-
propriately chosen bases

Bj(ϕj) =

{
|0〉j + eiϕj |1〉j√

2
,
|0〉j − eiϕj |1〉j√

2

}

, (27)

whereby the measurement outcomes sj ∈ {0, 1} for j =
1 .. 4 are obtained. Here, sj = 0 means that qubit j is
projected into the first state of Bj(ϕj). In (27) the ba-
sis states of all possible measurement bases lie on the
equator of the Bloch sphere, i.e. on the intersection of
the Bloch sphere with the x-y-plane. Therefore, the mea-
surement basis for qubit j can be specified by a single pa-
rameter, the measurement angle ϕj . The measurement
direction of qubit j is the vector on the Bloch sphere
which corresponds to the first state in the measurement
basis Bj(ϕj). Thus, the measurement angle ϕj is the an-
gle between the measurement direction at qubit j and
the positive x-axis. In summary, the procedure to realize
an arbitrary rotation URot[ξ, η, ζ], specified by its Euler
angles ξ, η, ζ, is this:

R. Raussendorf, D. E. Browne and H.J. Briegel,  Phys. Rev. A 68: 022312 (2003)
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LC-orbit of local Clifford equivalent states

ENTANGLEMENT IN GRAPH STATES AND ITS APPLICATIONS 21

the graph unchanged:

(41) τa : G !→ τa(G) := G + Na .

With this notation the following result can be stated [39, 60]:

Proposition 5 (LC-rule). By local complementation of a graph G at some vertex a ∈ V one
obtains an LC-equivalent graph state |τa(G)〉:

(42) |τa(G)〉 = U τ
a (G) |G〉 ,

where

(43) U τ
a (G) = e−i π

4 σa
xei π

4 σNa
z ∝

√

Ka

is a local Clifford unitary. Furthermore, two graph states |G〉 and |G′〉 are LC-equivalent iff the
corresponding graphs are related by a sequence of local complementations, i.e. G′ = τa1 ◦ . . . ◦
τan(G) for some a1, . . . , an ∈ V .
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No. 1 No. 2 No. 3 No. 4

No. 5 No. 6 No. 7 No. 8

No. 9 No. 10 No. 11
Apply LC!Rule

Fig. 4. – An example for a successive applica-
tion of the LC-rule, which exhibits the whole
equivalence class associated with graph No. 1.
The rule is successively applied to the vertex,
which is colored red in the figure.

Fig. 4 depicts an example for such a successive
application of the LC-rule. Starting with the first
graph the complete orbit can be obtained by ap-
plying the LC-rule to the vertices in the preceding
graph that appear above the arrow of the following
diagram:

No. 1
3−−−−→ No. 2

2−−−−→ No. 3
3−−−−→

No. 4
1−−−−→ No. 5

3−−−−→ No. 6
1−−−−→

No. 7
3−−−−→ No. 8

4−−−−→ No. 9
1−−−−→

No. 10
2−−−−→ No. 11

Proof of Proposition 5:
Let G be a graph with correlation operators Kb

and G′ = τa(G) the corresponding graph under
local complementation at vertex a with correlation operators K ′

b. For c ∈ V \ Na we find

(44) U τ
a Kc(U

τ
a )† = Kc = K ′

c .

For b ∈ Na, we compute

U τ
a Kb (U τ

a )† = (−iσa
x)

(

iσb
z

)

σb
x σa

zσNb\a
z

= σa
x σNa

z · σb
x σNb+Na

z

= K ′
a · K ′

b .
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Fig. 4 depicts an example for such a successive
application of the LC-rule. Starting with the first
graph the complete orbit can be obtained by ap-
plying the LC-rule to the vertices in the preceding
graph that appear above the arrow of the following
diagram:
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No. 7
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Proof of Proposition 5:
Let G be a graph with correlation operators Kb

and G′ = τa(G) the corresponding graph under
local complementation at vertex a with correlation operators K ′

b. For c ∈ V \ Na we find

(44) U τ
a Kc(U

τ
a )† = Kc = K ′

c .

For b ∈ Na, we compute

U τ
a Kb (U τ

a )† = (−iσa
x)

(

iσb
z

)

σb
x σa

zσNb\a
z

= σa
x σNa

z · σb
x σNb+Na

z

= K ′
a · K ′

b .

• Figure 4 in M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den 
Nest, H.-J. Briegel, quant-ph/0602096 (Varena lectures)
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Counter-example to LU-LC conjecture

11

equivalent but not LC equivalent graph states can differ only in on edge. Note that the simplifi-

cation of Q(x) discussed above does not simplify or change the form of the four stabilizer states

in Fig. 2.

FIG. 3: Corresponding Graph States

V. CONCLUSION

In summary, we have shown that the LU-LC conjecture is false by giving explicit counterex-

amples of it. It is also clear that in order to disprove the conjecture, we have to consider stabilizer

states with the rank of the support no less than 6. This result leads us to rethink about the local

equivalence problem of stabilizers as most of the previous work focus on proving the conjecture

to be true.

The random procedure generates counterexamples of size 27 and 35. Though not proved, we

believe that 27 is the smallest possible size of counterexamples of LU-LC. Although the LU-LC

conjecture is now disproved, we still know little about the relation of LU and LC equivalence and

do not have an explicit understanding of why or when LU equivalence differs from LC equiva-

lence. When d = 6, the random generation procedure can find a counterexample in seconds, but

it is in fact not an efficient algorithm when d is large or even when d = 7. That fact is we have

never obtained a valid counterexample of d = 7 using the random procedure. Fortunately, larger

scale counterexamples, including those of d = 7, have been found [7] motivated by the randomly

generated counterexamples.

As LU and LC equivalences are now known to be different. It is also challenging to ask whether

there is an efficient algorithm deciding LU equivalence for stabilizers or whether there is a graph

theoretical interpretation of LU equivalent graph states. This seems to be difficult as local unitary

operations are much less linked up with the stabilizer formalism.

The two graphs (with / without the red edge) represent locally equivalent 
states, but are not related by the LC rule.

Zhengfeng Ji et al, Quantum Inf. Comput., Vol. 10, No. 1&2, 97-108, 2010
Thursday, 29 July 2010



Universal resources derived via graphical rules

These regular graphs can all be mapped into square lattices via Pauli measurements 
- using the graphical rules. Hence all are resources for universal MBQC.

M. Van den Nest, et al, New J. Phys. 9 204 (2007).

CONTENTS 32

Fig. 2. Accordingly, we finally obtain a square lattice, i.e., a 2D cluster state. The total
spatial overhead is eight in that a unit square on (d) is obtained from eight hexagons
in (a). Since the overhead is constant, all resource states are efficient universal. !

Note that, since these other resource states can be transformed into the 2D
cluster state always by adaptive local projective measurements assisted with classical
communication, and local (Clifford) operations, they are also universal in the sense of
a conventional one-way quantum computation.

It is interesting to observe that the square lattice, together with the hexagonal and
triangular lattices are the only possibilities to obtain a regular tiling of the 2D plane.
Furthermore, the Kagome lattice is an example of a uniform semiregular 2D tiling
with 2 basic tiles (the triangle and the hexagon). The hexagonal lattice has vertex
degree 3, which leads to an increased robustness against local noise as compared to
the 2D cluster state [53]. Since the 1D cluster state (with uniform vertex degree 2)
has been proved not to be universal [27], the vertex degree 3 is minimal for universal
resource on uniform lattice structures.

We remark that other universal resource states have been presented [54] based
on non-uniform lattice structures (see also [55]), where each gate in a universal set
of unitary gates can be implemented by local measurements on an elementary unit
and these units are combined (bottom-up approach). Here we took, in contrast, a

(a) (b)

(c)

3 21

(d)

Figure 2. Examples of efficient universal resource for MQC. These are graph
states corresponding to (a) hexagonal, (b) triangular and (c) Kagome lattices.
Deterministic LOCC transformation from (a) to (d) (2D cluster state) via (b)
and (c) is indicated, where simple graph rules can be used sequentially (σy and
σz measurements are displayed by ! and ♦, respectively). The spatial overhead
for the transformation is constant.

Hexagonal Triangular

Kagome Square
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Measurement-patterns for gates in the one-way model

5

B. A universal set of quantum gates

To provide something definite to discuss right from the
beginning, we now give the procedures of how to realize
a CNOT-gate and a general one-qubit rotation via one-
qubit measurements on a cluster state. The explanation
of why and how these gates work will be given in Sec-
tion II G.

(a)

1 2 3 4 5 6 7

9 10 11 12 13 14 15

8
control

target

Y Y Y Y Y

Y

Y XXX X

X

X

CNOT-gate

(b)

1 2 3 4 5
_X !_+ "+#+_

(c)

1 2 3 4 5
X X X+#_

general rotation z-rotation

(d)

1 2 3 4 5
X YY Y

(e)

1 2 3 4 5
X X XY

Hadamard-gate π/2-phase gate

FIG. 2: Realization of elementary quantum gates on the QCC.
Each square represents a lattice qubit. The squares in the
extreme left column marked with white circles denote the in-
put qubits, those in the right-most column denote the output
qubits.

A CNOT-gate can be realized on a cluster state of 15
qubits, as shown in Fig. 2. All measurements can be
performed simultaneously. The procedure to realize a
CNOT-gate on a cluster with 15 qubits as displayed in
Fig. 2 is

Procedure 1 Realization of a CNOT-gate acting on a
two-qubit state |ψin〉.

1. Prepare the state

|Ψin〉C15 = |ψin〉1,9 ⊗
(
⊗

i∈C15\{1,9} |+〉i
)

.

2. Entangle the 15 qubits of the cluster C15 via the
unitary operation S(C15).

3. Measure all qubits of C15 except for the output
qubits 7, 15 (following the labeling in Fig. 2). The
measurements can be performed simultaneously.
Qubits 1, 9, 10, 11, 13, 14 are measured in the σx-
eigenbasis and qubits 2-6, 8, 12 in the σy-eigenbasis.

Dependent on the measurement results, the following
gate is thereby realized:

U ′
CNOT = UΣ,CNOT CNOT (c, t). (23)

Therein the byproduct operator UΣ,CNOT has the form

UΣ,CNOT = σ(c)
x

γ(c)
x

σ(t)
x

γ(t)
x

σ(c)
z

γ(c)
z

σ(t)
z

γ(t)
z

, with

γ(c)
x = s2 + s3 + s5 + s6

γ(t)
x = s2 + s3 + s8 + s10 + s12 + s14

γ(c)
z = s1 + s3 + s4 + s5 + s8 + s9 + s11 + 1

γ(t)
z = s9 + s11 + s13.

(24)
Therein, the si represent the measurement outcomes si

on the qubits i. The expression (24) is modified if re-
dundant cluster qubits are present and/or if the cluster
state on which the CNOT gate is realized is specified by
a set {κa} different from (12), see Section II C. This con-
cludes the presentation of the CNOT gate, the proof of
its functioning is given in Section II G.

An arbitrary rotation URot ∈ SU(2) can be realized
on a chain of 5 qubits. Consider a rotation in its Euler
representation

URot[ξ, η, ζ] = Ux[ζ]Uz[η]Ux[ξ], (25)

where the rotations about the x- and z-axis are

Ux[α] = exp
(

−iα
σx

2

)

Uz[α] = exp
(

−iα
σz

2

)

.
(26)

Initially, the first qubit is prepared in some state |ψin〉,
which is to be rotated, and the other qubits are prepared
in |+〉. After the 5 qubits are entangled by the unitary
transformation S, the state |ψin〉 can be rotated by mea-
suring qubits 1 to 4. At the same time, the state is also
swapped to site 5. The qubits 1 .. 4 are measured in ap-
propriately chosen bases

Bj(ϕj) =

{
|0〉j + eiϕj |1〉j√

2
,
|0〉j − eiϕj |1〉j√

2

}

, (27)

whereby the measurement outcomes sj ∈ {0, 1} for j =
1 .. 4 are obtained. Here, sj = 0 means that qubit j is
projected into the first state of Bj(ϕj). In (27) the ba-
sis states of all possible measurement bases lie on the
equator of the Bloch sphere, i.e. on the intersection of
the Bloch sphere with the x-y-plane. Therefore, the mea-
surement basis for qubit j can be specified by a single pa-
rameter, the measurement angle ϕj . The measurement
direction of qubit j is the vector on the Bloch sphere
which corresponds to the first state in the measurement
basis Bj(ϕj). Thus, the measurement angle ϕj is the an-
gle between the measurement direction at qubit j and
the positive x-axis. In summary, the procedure to realize
an arbitrary rotation URot[ξ, η, ζ], specified by its Euler
angles ξ, η, ζ, is this:

R. Raussendorf, D. E. Browne and H.J. Briegel,  Phys. Rev. A 68: 022312 (2003)
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Graphical “Gottesman-Knill Theorem”
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FIG. 16: The graph associated with the QFT on 3 qubits in the one-way quantum computer is represented in graph No. 1, where the boxes
denote the input (left) and output (right) vertices. Graph No. 2 is obtained from the first after performing all Pauli measurements according
to the protocol in Ref. [3], except from the σx-measurements at the input vertices. More precisely, it is obtained from graph No. 1 after
σy-measurements on the vertices 22, 23, 24, 26, 27, 28, 30, 31, 32 and σx-measurements on the vertices 2, 4, 7, 9, 11, 13, 15, 18, 20 have been
performed.

ror correction, quantum communication, and quantum com-
putation in the context of the one-way quantum computer. The
Schmidt measure is tailored for a comparably detailed account
on the quantum correlations grasping genuine multi-particle
entanglement, yet it turns out to be computable for many
graph states. We have presented a number of general rules
that can be applied when approaching the problem of evalu-
ating the Schmidt measure for general graph states, which are
stated mostly in graph theoretical terms. These rules have then
been applied to a number of graph states that appear in quan-
tum computation and error correction. Also, all connected
graphs with up to seven vertices have been discussed in detail.
The formalism that we present here abstracts from the actual
physical realisation, but as has been pointed out in several in-
stances, a number of well-controllable physical systems such

as neutral atoms in optical lattices serve as potential candi-
dates to realize such graph states [45, 46].

In this paper, the Schmidt measure has been employed to
quantify the degree of entanglement, as a generalization of
the Schmidt rank in the bipartite setting. This measure is
sufficiently coarse to be accessible for systems consisting of
many constituents and to allow for an appropriate discussion
of multi-particle entanglement in graph states. The approach
of quantifying entanglement in terms of rates of asymptotic
reversible state transformations, as an alternative, appears un-
feasible in the many-partite setting. The question of the min-
imal reversible entangling generating set (MREGS) in multi-
partite systems remains unresolved to date, even for quantum
systems consisting of three qubits, and despite considerable
research effort [47, 48]. These MREGS are the (not necessar-
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FIG. 16: The graph associated with the QFT on 3 qubits in the one-way quantum computer is represented in graph No. 1, where the boxes
denote the input (left) and output (right) vertices. Graph No. 2 is obtained from the first after performing all Pauli measurements according
to the protocol in Ref. [3], except from the σx-measurements at the input vertices. More precisely, it is obtained from graph No. 1 after
σy-measurements on the vertices 22, 23, 24, 26, 27, 28, 30, 31, 32 and σx-measurements on the vertices 2, 4, 7, 9, 11, 13, 15, 18, 20 have been
performed.

ror correction, quantum communication, and quantum com-
putation in the context of the one-way quantum computer. The
Schmidt measure is tailored for a comparably detailed account
on the quantum correlations grasping genuine multi-particle
entanglement, yet it turns out to be computable for many
graph states. We have presented a number of general rules
that can be applied when approaching the problem of evalu-
ating the Schmidt measure for general graph states, which are
stated mostly in graph theoretical terms. These rules have then
been applied to a number of graph states that appear in quan-
tum computation and error correction. Also, all connected
graphs with up to seven vertices have been discussed in detail.
The formalism that we present here abstracts from the actual
physical realisation, but as has been pointed out in several in-
stances, a number of well-controllable physical systems such

as neutral atoms in optical lattices serve as potential candi-
dates to realize such graph states [45, 46].

In this paper, the Schmidt measure has been employed to
quantify the degree of entanglement, as a generalization of
the Schmidt rank in the bipartite setting. This measure is
sufficiently coarse to be accessible for systems consisting of
many constituents and to allow for an appropriate discussion
of multi-particle entanglement in graph states. The approach
of quantifying entanglement in terms of rates of asymptotic
reversible state transformations, as an alternative, appears un-
feasible in the many-partite setting. The question of the min-
imal reversible entangling generating set (MREGS) in multi-
partite systems remains unresolved to date, even for quantum
systems consisting of three qubits, and despite considerable
research effort [47, 48]. These MREGS are the (not necessar-

M. Hein,  J. Eisert and H.J. Briegel, Phys. Rev. A 69, 062311 (2004)
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