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« Symmetny and preserved guantum information
« System-bath, decoherence and all that

« Unified view of decoherence-free subspaces,
noiseless subsystems, guantum error correcting
codes, operator guantum error correction

« DES/NS examples: theory and experiment

Feel free to Interrupt and ask lots of questions!
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Symmetny Protects Q. Infermation

Symmetry =» conserved quantity = quantum info.

1) DES/INS: Error Prevention
USe an existing exact symmetry to

perfectly hide g. info. from bath DFs

2) Dynamical Decoupling: Open-loop control

0

yhamica

ly generate a symmetry.

}strong>> [H,,|

-

time

BANG + free evolution <« bath correlation time
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\Whence the Errors?
Deconerence from System-Bath Interaction

Every real quantum system is coupled to an environment (“bath”).

Full Hamiltonian: = HS o HB ot HSB
He =>'S,®B,

System dynamics alone: system bath

p)=Trg e s (O)e | ‘ Decoherence

; . :
= chk = (t)0(0) E, (t) Non-unitary evolution of system

Markovian master op _ + + +
(Lindblad) equation: _,0 i _I[H s Pl+5 2 Z a, (ZSapSa. n pSa.Sa - Sa'SOHO)
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What IS there Is) a symmetny? Symmetrnc coin flipping
noise

logical 1 logical 0
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Unifiediview of Quantum! Infermation Protection:
Fixed Codes

Error Model:
Trace-preserving completely-positive (CP) maps:

0= EwpE, =E(p)_ -5 EME, =1

Decoherence-free subspace (DFS): H = A® B
C = {all states p: A — A} such that £(p) = p

Noiseless subsystem (NS): H=A®B, A=N QG = PasSIvVE

C' = {all states p: A — A} such that Trg&(p) = Trgp

N

Quantum error correcting code (QEC): H =A& B
C' = {all states p: A — A} such that 3CP map R
for which R o E(p) = p

> active
Operator QEC (OQEC): H=AeB, A=N®G§G
C' = {all states p: A — A} such that 3CP map R
for which TrgR o E(p) = Trgp




DES asia QEC, OEC as a DES

Decoherence-free subspace (DFS): H = A® B
C = {all states p: A — A} such that £(p) = p

Quantum error correcting code (QEC): H=Ad B
C' = {all states p: A — A} such that 3CP map R
for which R o E(p) = p

::> A DFS is a QEC with trivial recovery operation: R = [

::> A QEC is a DFS with respect to the map Ro &



NS as an OQEC, OQEC as an NS

Noiseless subsystem (NS): H=A® B, A=NRG
C' = {all states p: A — A} such that Trg&(p) = Trgp

Operator QEC (OQEC): H=A&B, A=NR®G
C' = {all states p: A — A} such that 3CP map R
for which TrgR o E(p) = Trgp

::> An NS is an OQEC with trivial recovery operation: R = I

::> An OQEC is an NS with respect to the map Ro €&



Unitanly: Invanant DES

Unitarily Invariant DFS:=Subspace of full system
Hilbert space in which evolution is purely unitary



Unitanly: Invanant DES

Unitarily Invariant DFS:=Subspace of full system
Hilbert space in which evolution is purely unitary

More precisely:

Let the system Hilbert space H decompose into a direct sum as H = Hp®OH,

and partition the system state pg accordingly into blocks: pg = ( Z]T) 52 )
2 3

Assume pp(0) #0.  Note imperfect initialization!

Then Hp is called decoherence-free ift the initial and final DFS-blocks of pg
are unitarily related:

pp(t) = Uppp (0)UY,

where Up is a unitary matrix acting on Hp.



U.l. DES Coenditions for CP Maps
Given a CP map:

SRR OE —C (D) - > E Fy =1

Theorem
A necessary and sufficient condition for the existence of a DFS Hp with
respect to the CP map £ is that all Kraus operators have a matrix representation

of the form
- CkUD 0

where Up is unitary, ¢ are scalars satisfying >, |cx|* = 1, and By, are arbitrary
operators on Hp satisfying Do B;Bk =l .

Meaning: F; act unitarily on the DF'S



U l. DES Coenditions for Master Eguations

Given a Markovian master equation:
2= ilHs,pl +5 Yo 2FapFl — pFlFs— FlFop

Theorem

A necessary and sufficient condition for the existence of a DFS Hp with
respect to the Markovian master equation above is that the Lindblad operators
F,, and the system Hamiltonian Hg have the block-diagonal form

H 0 col O
e () 7e (58

where Hp and H[% are Hermitian, c, are scalars, and B, are arbitrary operators
on Hi.

Meaning: F,, act as identity on the DFS, while Hg preserves the DFS



Exercise

1. Prove sufficiency (easy) and necessity (not so easy) of the U.1I.
DFES conditions for CP maps and Markovian master equations

2. Generalize to NS, QEC, OQEC



Where is the promised symmetry?

How do we find and construct a DFS?



U l. DES Conditions for Hamiltonian Dynamics

Under Hamiltonian dynamics system and bath evolve jointly
subject to the Schrodinger equation with the Hamiltonian H=H. +H +H.

Find a subspace where H ., =>»" S, ® B, acts trivially,
l.e.: make H_, oc I. ®0p

Also, remember that Hg must preserve the DFS.



U l. DES Conditions for Hamiltonian Dynamics

Under Hamiltonian dynamics system and bath evolve jointly
subject to the Schrodinger equation with the Hamiltonian H=H. +H +H.

Find a subspace where H ., =>»" S, ® B, acts trivially,
l.e.: make H_, oc I. ®0p

Also, remember that Hg must preserve the DFS.

Theorem

Let A = alg{I, S,,S!}.

Assume [Hg, A] = 0.

The dimension of the DFS Hp equals the degeneracy of the 1-dimensional
irreducible representation (irrep) of A.

degeneracy <==) symmetry



Simplest DES Example: Collective Dephasing

DES Find a subspace where H., =» S, ® B, acts trivially,
idea: | j.e.: make H ., oc |. ® O,

Permutation symmetry in z direction:

Long-wavelength magnetic field B (environment) couples to spins
Effect: Random "Collective Dephasing":
i
|l/jj> o aj |O)j +bj |1)j 7 aj |O)j t€ bi |l)j



Simplest DES Example: Collective Dephasing

DES Find a subspace where H., =» S, ® B, acts trivially,
idea: | j.e.: make H ., oc |. ® O,

Permutation symmetry in z direction:

H. . =g(of +0/)®B=

-2gB V).,
0 9.1,

0 11,14,

2g8) |").IM,
Long-wavelength magnetic field B (environment) couples to spins

Effect: Random "Collective Dephasing":

|l//j> =a, |O)j +b, |j|_)j —a |0>j +ei9bj |1>j DFS encodmg

). =% ®[1),
9.1, ®[0),



Why it Werks

Collective dephasing:
|l//>j = aj |O>j == bj |1>j = aj |O)j +e|9bj |1)j

Case of two qubits:

>®|O>HIO>®IO> [00)

0)®|1) > |0) ®(e"|1)) = €| 01)
LRI [0)=e " [10)
D) - (e’|1)) ®(e’|1)) =e|11)



Why it Werks

Collective dephasing:
lw) =a |0) +b |1) > a |0) +e“b |1)
I J J J J

Case of two qubits:
0)®|0) - |0) ®|0) =|00)
0

0)@|1) - [0) ® (€ 1)) =e"(01) =|o),
)®[0) - (1)) ®]0) =e"(20)) =|1),
8|

)®[1) > (e]1)) © (e [1) =™ 12

=

Global phase physically irrelevant:
lw), =al0), +b|1) is decoherence-free:

A 2-dimensional protected subspace.



Why it Werks

Collective dephasing:
lw) =a |0) +b |1) > a |0) +e“b |1)
I J J J J

Case of two qubits:
0)®|0) - |0) ®|0) =|00)

)] > [0) @ (e 1) =e"(0) =|0),
)2[0) > (e”[B) @0y =e"(10) = 1)
)®|1) - (e|1)) ®(e]1)) =’ |11)

=

=

Global phase physically irrelevant:

pop quiz:

Are the states
|00) and |11)
also in a DF'S?

lw), =al0), +b|1) is decoherence-free:

A 2-dimensional protected subspace.



Generalization: Noiseless Sulhsystems

[E. Knill; R. Laflamme and L. Viola, PRIL 84, 2525 (2000)]

The dimension of the DF'S Hp equals the degeneracy of the 1-dimensional
irreducible representation (irrep) of A.

1D irreps condition not needed...
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The dimension of the DFS Hp equals the degeneracy of the 1-dimensional
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A theorem from C* algebras:

Associative algebra A = polynomials{l,S_,S’}

Model of decoherence: Matrix representation over C?" :
A=®l ®M, (C)
H, =Y's, ®B Ph O,
se = 2.5 ®B, ~— dimens
7 f '\ dimension

: : . multiplicit
irreducible representations PICTY

Hilbert space decomposition:
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Generalization: Noiseless Sulhsystems

[E. Knill; R. Laflamme and L. Viola, PRIL 84, 2525 (2000)]

The dimension of the DFS Hp equals the degeneracy of the 1-dimensional
irreducible representation (irrep) of A.

1D irreps condition not needed...

A theorem from C* algebras:

Associative algebra A = polynomials{l,S_,S’}

Model of decoherence: Matrix representation over C?" :
A=®l ®M, (C)
H, =Y's, ®B Ph O,
se = 2.5 ®B, ~— dimens
7 f '\ dimension

: : . multiplicit
irreducible representations PICTY

Hilbert space decomposition:
Each J labels an c* =eCh)®C*
n,-dimensional NS code

DFS is the case d, =1 _ _ _ _
n, > 1iff 3 symmetry in system-env. interaction



|Ssetrepic Quantum Errors:
Collective Decoherence Model

Describes, e.g., low-
T decoherence due
to phonons in
various solid state
QC proposals

B, (t)Z



|Ssetrepic Quantum Errors:
Collective Decoherence Model

Describes, e.g., low-
T decoherence due
to phonons in
various solid state
QC proposals

Error model, N qubits:

"Collective Decoherence"
Ho= > (Gf‘+---+0‘,ﬁ) ®B,

SB
a=xX,y,Z - . y
S, =total spin operator

B, (t)Z




|Ssetrepic Quantum Errors:
Collective Decoherence Model

Describes, e.g., low-
T decoherence due
to phonons in
various solid state
QC proposals

Error model, N qubits:
[w)

IW>H<UY(1)®---®UY(N)

U,()®---®U,(N)

prob. p,

U,(D)®---®U,(N) prob. p,

prob. p,
prob. p,

B, (t)Z

Do irreps analysis of n copies of su(2)...



All'Deceherence-Eree Sulhspaces/Subsystems for Collective

Deceherence
Hilbert space decomposition:
N d multiplicity n;,,
t C* =0C"CH | 7 ’ Ol e
2 J /" counts paths;
’(’,/ \\\ L/‘ dJ:2J+1
3/2 L
/’, \\\ ,/'/ \\\«
1 1 < \3 /,( 9 ) 4
v D A N v L 14«
; 5
1/2 1,\’/ g" > >
PRI L D [ e 5 S W4,
! (S , W r :
1 2z 3 4 5 6 7 8 n



All'Deceherence-Eree Sulhspaces/Subsystems for Collective

Deceherence
Hilbert space decomposition:
N d multiplicity n;,,
t C* =0C"CH | 7 ’ Ol e
2 J /" counts paths;
’(’,, \\\ L/‘ dJ:2J+1
3/2 L
//’, \‘\ ,/'/ \\\«
1 /( \3 /,( 9 > 4
L E >
S N N VR
1/2 L : =
S L D 5 14,
N N > i
1 2 3 4 5 6 71 8

[
»

| =on-po)y

1/2 /\
1 2

0

1
1/2 =|L)
o 1 , 3 "



All'Deceherence-Eree Sulhspaces/Subsystems for Collective

Deceherence
Hilbert space decomposition:
N n, d; P ~multiplicity n;, 4 1
] s S—DC 2C 1 /" counts paths; 1 :ﬁ(|01>_|10>)|1>
\‘\ LL/ dJ:2J+1 _
3/2 L ( \’ - /\ /® &
1 L Ne N s o= L
,,', \\\\ )/ & \«\ ,/', \\«\ 2 1
. 1// i 7 5‘ 14‘ - \g [110) - \g (l022)~[202))
’/,’, \\\\\ 1 ,{,’a«\\ 2 /{ /’ \\\«\\ 5 l{,/, \\\«\\ 14 /’ 1
0/ 2 3 ) s & 7 8 n 12 =[1,)
sl A
0,)= /\/\ )=

:%(|01>—|1o>)(|01>—|1o>) :m(2|0011>+ 2/1100) - (|0110) + [1001) +]1010) + [0101) )



What Is the “Veolume” of a DES/INS?

n1(2J +1)

Degeneracy for given J,M = dimension of DFS/NS =D, (n) = (n/2 ] 1)l(n/2 J)!
+J+1)! -J)!

no. of encoded qubits U= log, D,(n) ... ., 3log,n

— coderate = — -
no. of qubits n 2 N



What Is the “Veolume” of a DES/INS?

n1(2J +1)
(n/2+J+1)(n/2-J)!

Degeneracy for given J,M = dimension of DFS/NS =D, (n) =

no. of encoded qubits U= log, D,(n) ... ., 3log,n

— coderate = — -
no. of qubits n 2 N

DFS’s for collective decoherence
asymptotically fill the Hilbert space!
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So far have storage. What about computation?

To prevent decoherence, computation should never leave DFS/NS.
Which logic operations are compatible?

Error algebra:

A= €Jr)InJ ®M, (C)

Code subsystem:

c? = %
J

Commutant = operators commuting with A
A'= CjBM W, (C)®1

The allowed logic operations!



Computation Inside a U.l. DES/NS

So far have storage. What about computation?

To prevent decoherence, computation should never leave DFS/NS.
Which logic operations are compatible?

Error algebra:

Az@l, ®M, (C) Universal quantum
computation over
Code subsystem: DFS/NS is possible

- CdJ using “exchange
J Hamiltonians”, e.g.,
Commutant = operators commuting with A Heisenberg interaction:

A=oML, (C)el, H Jij XgX+ VoY +o5lo2
The allowed logic operations! Heis :IZJ:?(O-i O] T0; 7] T0; ij



Heisenberg Computation over DFS/NS is Universal

e Heisenberg exchange interaction:
Hueis = )5 ; Jij (XaX; + YiY; + ZiZ5) = ), 5 Jij B

e Universal over collective-decoherence DFS
[J. Kempe, D. Bacon, D.A.L., B. Whaley, Phys. Rev. A 63, 042307 (2001)]

A'=®M', (C)®l,

The allowed logic operations




Heisenberg Computation over DFS/NS is Universal

e Heisenberg exchange interaction:
Hueis = )5 ; Jij (XaX; + YiY; + ZiZ5) = ), 5 Jij B

e Universal over collective-decoherence DFS
[J. Kempe, D. Bacon, D.A.L., B. Whaley, Phys. Rev. A 63, 042307 (2001)]

e Over 4-qubit DFS: AR, )y

~|20) )( |10>) The allowed logic operations

=5 (1o
1, ) = %(2|0011> +2|1100) —(|0110) +[1001) +[1010) +|0101) )

X = _%(Eli’) + %E12> 7 = —FEq5

X and €% generate arbitrary single encoded qubit gates

CNOT involves 42 elementary steps (D. Bacon, Ph.D. thesis)

* Implications for simplifying operation of spin-based quantum dot QCs




Experimental Verification of

Decoherence-Free Subspaces In the

Paul G. Kwiat,'* Andrew J. Berglund,' Joseph B. Altepeter,’ " "
Andrew G. White'-2 beglnnlng "

Using spontaneous parametric down-conversion, we produce polarization-en-
tangled states of two photons and characterize them using two-photon to-
mography to measure the density matrix. A controllable decoherence is im-
posed on the states by passing the photons through thick, adjustable birefrin-
gent elements. When the system is subject to collective decoherence, one
particular entangled state is seen to be decoherence-free, as predicted by
theory. Such decoherence-free systems may have an important role for the
future of quantum computation and information processing.

20 OCTOBER 2000 WVOL 290 SCIENCE www.sciencemag.org
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Experimental Verification of

Decoherence-Free Subspaces

Paul G. Kwiat,'* Andrew J. Berglund,' Joseph B. Altepeter,’
Andrew G. White'-2

Using spontaneous parametric down-conversion, we pro-i o~ nnlarizaticn e
tangled states of two photons and characterize them

mography to measure the density matrix. A controlla Ar* jaser uv
posed on the states by passing the photons through th& | _ """

gent elements. When the system is subject to collec |

particular entangled state is seen to be decoherence

theory. Such decoherence-free systems may have an
future of quantum computation and information proc

uv BBO
PBS

selector

Bel| state

Collective
decoherence

20 OCTOBER 2000 WVOL 290 SCIENCE www.sciencemag.org
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Experimental Realization of
Noiseless Subsystems for
Quantum Information Processing

Lorenza Viola,"{ Evan M. Fortunato,?* Marco A. Pravia,®
Emanuel Knill," Raymond Laflamme," David G. Cory?®

=]
[

We demonstrate the protection of one bit of quantum information against all
collective noise in three nuclear spins. Because no subspace of states offers this
protection, the quantum bit was encoded in a proper noiseless subsystem. We
therefore realize a general and efficient method for protecting quantum in-
formation. Robustness was verified for a full set of noise operators that do not 0.03 = 0.

I|a“I
0.51+ 0,

Entanglement fidelity F,

distinguish the spins. Verification relied on the most complete exploration of
engineered decoherence to date. The achieved fidelities show improved infor-
mation storage for a large, noncommutative set of errors.

0.03 =0,

13C-labeled alanine

04 0,43 £0.03
03 0.64+0.02
03 0.62+0.02

B

4 Un-Encoded, y Moise
® MNS-Encoded, y Moise
® MNS-Encoded, z Noise

14 SEPFTEMBER 2007 WOL 293 SCIEMNCE  www.sciencemag.org

10

20

Moise strength 1/t (s7)
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VOLUME 92, NUMBER 10 PHYSICAL REVIEW LETTERS 12 MARCH 2%1)4

Decoherence-Free Quantum Information Processing with Four-Photon Entangled States

Mohamed Bcn.nennf-me,"2 Manfred Eibl,"? Sascha Gaertner."> Christian Kurts.i(—:fer,2
Adin Cabello.” and Harald Weinfurter'

. 'Max-Planck-Institut fiir Quantenoptik, D-85748 Garching, Germany
“Sektion Physik, Ludwig-Maximilians-Universitdt, D-80797 Miinchen, Germany

3 Departamento de Fisica Aplicada I, Universidad de Sevilla, E-41012 Sevilla, Spain
(Received 22 August 2003; published 9 March 2004)

Decoherence-free states protect quantum information from collective noise, the predominant cause
of decoherence in current implementations of quantum communication and computation. Here we
demonstrate that spontaneous parametric down conversion can be used to generate four-photon states
which enable the encoding of one qubit in a decoherence-free subspace. The immunity against noise is
verified by guantum state tomography of the encoded qubit. We show that particular states of the
encoded qubit can be distinguished by local measurements on the four photons only.

%

,“é
3
3
SPDC &
L4 | 3
UV pulses : 3
BBO : PBSia |2
X £
qv.p”" SPADs
U U\j_

QUANTUM " pg
CHANNEL -
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Decoherence-Free Quantum Information Processing with Four-Photon Entangled States

Mohamed Bourennane,'? Manfred Eibl,'? Sascha Gaertner,"? Christian Kurtsiefer,’
Adin Cabello,” and Harald Weinfurter'-
. 'Max-Planck-Institut fiir Quantenoptik, D-85748 Garching, Germany
“Sektion Physik, Ludwig-Maximilians-Universitdt, D-80797 Miinchen, Germany
3 Departamento de Fisica Aplicada I, Universidad de Sevilla, E-41012 Sevilla, Spain
(Received 22 August 2003; published 9 March 2004)
Decoherence-free states protect quantum information from collective noise, the predominant cause
of decoherence in current implementations of quantum communication and computation. Here we

demonstrate that spontaneous parametric down conversion
which enable the encoding of one qubit in a decoherence-frc & Nmse%
verified by guantum state tomography of the encoded qul

encoded qubit can be distinguished by local measurements Pou

%

SPDC

multi-coincidence unit

| vl

WV pmse%BO . pSi, | FIG. 4 (color online). Propagation of the logical qubit |[W,) =
1 (v3|®y) — |P,))/2: (a) and (b) show the experimentally ob-
4 tained density matrices before (p;,) and after (pg,) passage
QEHH— SfADS through a noisy quantum channel. The encoding in a DF
v v subspace protected the transmission, leading to a fidelity of
QUANTUM pg 4, | F, ., =0.9958 *+ 0.0759 in the presence of noise (overall

CHANNEL L) Pine Pout

measurement time 12 h).



What about symmetry breaking?

D.L., I.L. Chuang, K.B. Whaley, PRL 81, 2594 (1998); D. Bacon, D.L., K.B. Whaley, PRA 60, 1944 (1999)

Symmetry breaking:

unequal coupling constants, lowering of symmetry by a perturbation, etc.

Introduce a perturbation via Hsg — Hgp + €AH, |AH|| =1

Theory shows that fidelity depends on € only to

second

order.



ROBUSTNESS Off DES 1o symmetry: breaking perturbations

FQ 4 h 7 C week ending
VoLuMmE 92, NUMBER 14 PHYSICAL REVIEW LETTERS 9 TA,PR[T 2]:5:34

Experimental Investigation of a Two-Qubit Decoherence-Free Subspace

1 B .i"shltel_'-eter,l'E PG. H:-1u:lln£-.1..’,2 S. M. Wendelken,” A. 1. Berglund,""* and P G. Kwiat"-*"

lDepa ritment aof Physics, University of Illinois at Urbana-Chanmpaign, Urbana, Hlinois 618
EP.FE_‘_L‘S!:{‘S Division, P-23, Los Alamos National Laboratories, Los Alamos, New Mexico 875
(Received 31 May 2003; published 9 April 2004

We thoroughly explore the phenomenon of a decoherence-free subspace (DFS) for two-qubit systems.

Specifically, we both collectively and noncollectively decohere entangled polarization-encoded two-

qubit states using thick birefringent crystals. These results characterize the basis-dependent effect of

decoherence on the four Bell states, the robusiness of the DFS state against perturbations in the

assumption of collective decoherence, and the existence of a DFS for each type of stable noncollective
decoherence. Finally, we investigate the effects of collective and noncollective dissipation.
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Experimental Investigation of a Two-Qubit D

1. B. Altepeter."* P.G. Hadley.” S. M. Wendelken,” A.J.

lDepar:mmr af Physics, University of Hlinois at Urbana-Chanip
EP.FE}‘S!:C.S‘ Division, P-23, Los Alamos National Laboratories, L
(Received 31 May 2003; published 9

We thoroughly explore the phenomenon of a decoherence-free (BEO) HWF
Specifically, we both collectively and noncollectively decohere
qubit states using thick birefringent crystals. These results cha: Bell State Creation Basis Selection
decoherence on the four Bell states, the robustness of the DI
assumption of collective decoherence, and the existence of a DFS for each 1 type of stable noncollective
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Strong Symmetry Breaking

A Decoherence-Free Quantum
Memory Using Trapped lons

D. Kielpinski,"* V. Meyer," M. A. Rowe," C. A. Sackett,’
W. M. ltano," C. Monroe,? D. ). Wineland

We demonstrate a decoherence-free quantum memory of one qubit. By en-
coding the qubit into the decoherence-free subspace (DFS) of a pair of trapped
“Be* ions, we protect the qubit from environment-induced dephasing that
limits the storage time of a qubit composed of a single ion. We measured the
storage time under ambient conditions and under interaction with an engi-
neered noisy environment and observed that encoding into the DFS increases
the storage time by up to an order of magnitude. The encoding reversibly
transfers an arbitrary qubit stored in a single ion to the DFS of two ions.

www.sciencemag.org SCIENCE VOL 2971 9 FEBRUARY 2001

Chief decoherence sources:

(1) fluctuating long-wavelength
ambient magnetic fields;

(i) heating of ion CM motion
during computation: a
symmetry-breaking process

DFS encoding: into pair of ions

[0}, =[0), @[, 1), =[2). ®]0),

Bare qubit:
two hyperfine states of
trapped °Be* ion

DFS-encoded
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