Hybrid quantum error prevention, reduction, and correction methods

$10^{\text {th }}$ Canadian Summer School on Quantum Information UBC, July 21, 2010

Phys. Rev. Lett. 91, 217904 (2003)
Daniel Lidar
University of Southern California

Outline

- Symmetry and preserved quantum information
- System-bath, decoherence and all that
- Unified view of decoherence-firee subspaces, noiseless subsystems, quantum error correcting codes, operator quantum error correction
- DFS/NS examples: theory and experiment

Outline

- Symmetry and preserved quantum information
- System-bath, decoherence and all that
- Unified view of decoherence-firee subspaces, noiseless subsystems, quantum error correcting codes, operator quantum error correction
- DFS/NS examples: theory and experiment

Feel free to interrupt and ask lots of questions!

Symmetry Protects Q. Information

Symmetry \rightarrow conserved quantity = quantum info.

Symmetry Protects Q. Information

Symmetry \rightarrow conserved quantity = quantum info.

1) DFS/NS: Error Prevention use an existing exact symmetry to perfectly hide q. info. from bath

Symmetry Protects Q. Information

Symmetry \rightarrow conserved quantity = quantum info.

1) DFS/NS: Error Prevention use an existing exact symmetry to perfectly hide q. info. from bath
2) Dynamical Decoupling: Open-loop control dynamically generate a symmetry

BANG + free evolution « bath correlation time

Whence the Errors? Decoherence from System-Bath Interaction

Whence the Errors?
 Decoherence from System-Bath Interaction

Every real quantum system is coupled to an environment ("bath").
Full Hamiltonian:

$$
\begin{aligned}
& H=H_{S}+H_{B}+H_{S B} \\
& H_{S B}=\sum_{\alpha} S_{\alpha} \otimes B_{\alpha}
\end{aligned}
$$

Whence the Errors?
 Decoherence from System-Bath Interaction

Every real quantum system is coupled to an environment ("bath").
Full Hamiltonian:

System dynamics alone:

$$
H=H_{S}+H_{B}+H_{S B}
$$

$$
H_{S B}=\sum_{\alpha} S_{\alpha} \otimes B_{\alpha}
$$

$$
\begin{aligned}
\rho(t) & =\operatorname{Tr}_{B}\left[e^{-i H t} \rho_{S B}(0) e^{i H t}\right] \\
& =\sum_{k} c_{k} E_{k}(t) \rho(0) E_{k}(t)^{\dagger}
\end{aligned}
$$

Whence the Errors?
 Decoherence from System-Bath Interaction

Every real quantum system is coupled to an environment ("bath").
Full Hamiltonian:

$$
\begin{aligned}
& H=H_{S}+H_{B}+H_{S B} \\
& H_{S B}=\sum_{\alpha} S_{\alpha} \otimes B_{\alpha}
\end{aligned}
$$

System dynamics alone:

$$
\begin{aligned}
\rho(t) & =\operatorname{Tr}_{B}\left[e^{-i H t} \rho_{S B}(0) e^{i H t}\right] \\
& =\sum_{k} c_{k} E_{k}(t) \rho(0) E_{k}(t)^{\dagger}
\end{aligned}
$$

Decoherence

Non-unitary evolution of system

Markovian master
(Lindblad) equation:

$$
\frac{\partial \rho}{\partial t}=-i\left[H_{s}, \rho\right]+\frac{1}{2} \sum_{\alpha, \alpha^{\prime}} a_{\alpha, \alpha^{\prime}}\left(2 S_{\alpha} \rho S_{\alpha^{\prime}}^{\dagger}-\rho S_{\alpha^{\prime}}^{\dagger} S_{\alpha}-S_{\alpha^{\prime}}^{\dagger} S_{\alpha} \rho\right)
$$

What is there is a symmetry? Symmetric coin flipping noise

What is there is a symmetry? Symmetric coin flipping noise

How to reliably store a single bit?

What is there is a symmetry? Symmetric coin flipping noise

Unified view of Quantum Information Protection: Fixed Codes

Error Model:

Trace-preserving completely-positive (CP) maps:

$$
\rho^{\prime}=\sum_{k} E_{k} \rho E_{k}^{\dagger} \equiv \mathcal{E}(\rho) \quad \sum_{k} E_{k}^{\dagger} E_{k}=I
$$

Unified view of Quantum Information Protection: Fixed Codes

Error Model:

Trace-preserving completely-positive (CP) maps:

$$
\rho^{\prime}=\sum_{k} E_{k} \rho E_{k}^{\dagger} \equiv \mathcal{E}(\rho) \quad \sum_{k} E_{k}^{\dagger} E_{k}=I
$$

Decoherence-free subspace (DFS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}$
$C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\mathcal{E}(\rho)=\rho$

Unified view of Quantum Information Protection:

 Fixed Codes
Error Model:

Trace-preserving completely-positive (CP) maps:

$$
\rho^{\prime}=\sum_{k} E_{k} \rho E_{k}^{\dagger} \equiv \mathcal{E}(\rho) \quad \sum_{k} E_{k}^{\dagger} E_{k}=I
$$

Decoherence-free subspace (DFS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}$
$C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\mathcal{E}(\rho)=\rho$
Noiseless subsystem (NS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}, \mathcal{A}=\mathcal{N} \otimes \mathcal{G}$
$C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\operatorname{Tr}_{\mathcal{G}} \mathcal{E}(\rho)=\operatorname{Tr}_{\mathcal{G}} \rho$

Unified view of Quantum Information Protection:

 Fixed Codes
Error Model:

Trace-preserving completely-positive (CP) maps:

$$
\rho^{\prime}=\sum_{k} E_{k} \rho E_{k}^{\dagger} \equiv \mathcal{E}(\rho) \quad \sum_{k} E_{k}^{\dagger} E_{k}=I
$$

Decoherence-free subspace (DFS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}$
$C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\mathcal{E}(\rho)=\rho$
Noiseless subsystem (NS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}, \mathcal{A}=\mathcal{N} \otimes \mathcal{G}$ $C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\operatorname{Tr}_{\mathcal{G}} \mathcal{E}(\rho)=\operatorname{Tr} \operatorname{Tr}_{\mathcal{G}}$

Quantum error correcting code (QEC): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}$ $C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\exists \mathrm{CP}$ map \mathcal{R} for which $\mathcal{R} \circ \mathcal{E}(\rho)=\rho$

Unified view of Quantum Information Protection:

Fixed Codes

Error Model:

Trace-preserving completely-positive (CP) maps:

$$
\rho^{\prime}=\sum_{k} E_{k} \rho E_{k}^{\dagger} \equiv \mathcal{E}(\rho) \quad \sum_{k} E_{k}^{\dagger} E_{k}=I
$$

Decoherence-free subspace (DFS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}$
$C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\mathcal{E}(\rho)=\rho$
Noiseless subsystem (NS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}, \mathcal{A}=\mathcal{N} \otimes \mathcal{G}$ $C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\operatorname{Tr}_{\mathcal{G}} \mathcal{E}(\rho)=\operatorname{Tr}_{\mathcal{G}} \rho$

Quantum error correcting code (QEC): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}$ $C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\exists \mathrm{CP}$ map \mathcal{R} for which $\mathcal{R} \circ \mathcal{E}(\rho)=\rho$

Operator QEC (OQEC): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}, \mathcal{A}=\mathcal{N} \otimes \mathcal{G}$ $C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\exists \mathrm{CP}$ map \mathcal{R} for which $\operatorname{Tr}_{\mathcal{G}} \mathcal{R} \circ \mathcal{E}(\rho)=\operatorname{Tr}_{\mathcal{G}} \rho$

DFS as a QEC, QEC as a DFS

Decoherence-free subspace (DFS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}$
$C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\mathcal{E}(\rho)=\rho$
Quantum error correcting code (QEC): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}$
$C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\exists \mathrm{CP} \operatorname{map} \mathcal{R}$ for which $\mathcal{R} \circ \mathcal{E}(\rho)=\rho$

A DFS is a QEC with trivial recovery operation: $\mathcal{R}=I$

A QEC is a DFS with respect to the map $\mathcal{R} \circ \mathcal{E}$

NS as an OQEC, OQEC as an NS

Noiseless subsystem (NS): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}, \mathcal{A}=\mathcal{N} \otimes \mathcal{G}$
$C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\operatorname{Tr}_{\mathcal{G}} \mathcal{E}(\rho)=\operatorname{Tr}_{\mathcal{G}} \rho$
Operator QEC (OQEC): $\mathcal{H}=\mathcal{A} \oplus \mathcal{B}, \mathcal{A}=\mathcal{N} \otimes \mathcal{G}$ $C=\{$ all states $\rho: \mathcal{A} \rightarrow \mathcal{A}\}$ such that $\exists \mathrm{CP}$ map \mathcal{R} for which $\operatorname{Tr}_{\mathcal{G}} \mathcal{R} \circ \mathcal{E}(\rho)=\operatorname{Tr}_{\mathcal{G}} \rho$

An NS is an OQEC with trivial recovery operation: $\mathcal{R}=I$

An OQEC is an NS with respect to the map $\mathcal{R} \circ \mathcal{E}$

Unitarily Invariant DFS

Unitarily Invariant DFS:=Subspace of full system Hilbert space in which evolution is purely unitary

Unitarily Invariant DFS

Unitarily Invariant DFS:=Subspace of full system Hilbert space in which evolution is purely unitary

More precisely:

Let the system Hilbert space \mathcal{H} decompose into a direct sum as $\mathcal{H}=\mathcal{H}_{\mathrm{D}} \oplus \mathcal{H} \frac{1}{\mathrm{D}}$, and partition the system state ρ_{S} accordingly into blocks: $\rho_{S}=\left(\begin{array}{cc}\rho_{\mathrm{D}} & \rho_{2} \\ \rho_{2}^{\dagger} & \rho_{3}\end{array}\right)$. Assume $\rho_{\mathrm{D}}(0) \neq 0 . \quad$ Note imperfect initialization!

Then \mathcal{H}_{D} is called decoherence-free iff the initial and final DFS-blocks of ρ_{S} are unitarily related:

$$
\rho_{\mathrm{D}}(t)=U_{\mathrm{D}} \rho_{\mathrm{D}}(0) U_{\mathrm{D}}^{\dagger},
$$

where U_{D} is a unitary matrix acting on \mathcal{H}_{D}.

U.I. DFS Conditions for CP Maps

Given a CP map:

$$
\rho^{\prime}=\sum_{k} E_{k} \rho E_{k}^{\dagger}=\mathcal{E}(\rho) \quad \sum_{k} E_{k}^{\dagger} E_{k}=I
$$

Theorem

A necessary and sufficient condition for the existence of a DFS \mathcal{H}_{D} with respect to the CP map \mathcal{E} is that all Kraus operators have a matrix representation of the form

$$
E_{k}=\left(\begin{array}{cc}
c_{k} U_{\mathrm{D}} & 0 \\
0 & B_{k}
\end{array}\right),
$$

where U_{D} is unitary, c_{k} are scalars satisfying $\sum_{k}\left|c_{k}\right|^{2}=1$, and B_{k} are arbitrary operators on $\mathcal{H} \frac{\perp}{\mathrm{D}}$ satisfying $\sum_{k} B_{k}^{\dagger} B_{k}=I$.

Meaning: E_{k} act unitarily on the DFS

U.I. DFS Conditions for Master Equations

Given a Markovian master equation:

$$
\frac{d \rho}{d t}=-i\left[H_{S}, \rho\right]+\frac{1}{2} \sum_{\alpha} 2 F_{\alpha} \rho F_{\alpha}^{\dagger}-\rho F_{\alpha}^{\dagger} F_{\alpha}-F_{\alpha}^{\dagger} F_{\alpha} \rho
$$

Theorem
A necessary and sufficient condition for the existence of a DFS \mathcal{H}_{D} with respect to the Markovian master equation above is that the Lindblad operators F_{α} and the system Hamiltonian H_{S} have the block-diagonal form

$$
H_{S}=\left(\begin{array}{cc}
H_{\mathrm{D}} & 0 \\
0 & H_{\mathrm{D}}^{\perp}
\end{array}\right), \quad F_{\alpha}=\left(\begin{array}{cc}
c_{\alpha} I & 0 \\
0 & B_{\alpha}
\end{array}\right),
$$

where H_{D} and H_{D}^{\perp} are Hermitian, c_{α} are scalars, and B_{α} are arbitrary operators on $\mathcal{H} \stackrel{\perp}{\mathrm{D}}$.

Meaning: F_{α} act as identity on the DFS, while H_{S} preserves the DFS

Exercise

1. Prove sufficiency (easy) and necessity (not so easy) of the U.I. DFS conditions for CP maps and Markovian master equations
2. Generalize to NS, QEC, OQEC

Where is the promised symmetry?
How do we find and construct a DFS?

U.I. DFS Conditions for Hamiltonian Dynamics

Under Hamiltonian dynamics system and bath evolve jointly subject to the Schrodinger equation with the Hamiltonian $H=H_{S}+H_{S B}+H_{B}$.

Find a subspace where $H_{S B}=\sum_{\alpha} S_{\alpha} \otimes B_{\alpha}$ acts trivially, i.e.: make $H_{S B} \propto I_{S} \otimes O_{B}$

Also, remember that H_{S} must preserve the DFS.

U.I. DFS Conditions for Hamiltonian Dynamics

Under Hamiltonian dynamics system and bath evolve jointly subject to the Schrodinger equation with the Hamiltonian $H=H_{S}+H_{S B}+H_{B}$.

Find a subspace where $H_{S B}=\sum_{\alpha} S_{\alpha} \otimes B_{\alpha}$ acts trivially, i.e.: make $H_{S B} \propto I_{S} \otimes O_{B}$

Also, remember that H_{S} must preserve the DFS.

Theorem

Let $A=\operatorname{alg}\left\{I, S_{\alpha}, S_{\alpha}^{\dagger}\right\}$.
Assume $\left[H_{S}, A\right]=0$.
The dimension of the DFS \mathcal{H}_{D} equals the degeneracy of the 1-dimensional irreducible representation (irrep) of A.

Simplest DFS Example: Collective Dephasing

DFS idea: i.e.: make $H_{S B} \propto I_{S} \otimes O_{B}$

Permutation symmetry in z direction:

Long-wavelength magnetic field B (environment) couples to spins
Effect: Random "Collective Dephasing":

$$
\left|\psi_{j}\right\rangle=a_{j}|0\rangle_{j}+b_{j}|1\rangle_{j} \mapsto a_{j}|0\rangle_{j}+e^{i \theta} b_{j}|1\rangle_{j}
$$

Simplest DFS Example: Collective Dephasing

DFS idea: i.e.: make $H_{S B} \propto I_{S} \otimes O_{B}$

Permutation symmetry in z direction:
$H_{\mathrm{int}}=g\left(\sigma_{1}^{2}+\sigma_{1}^{2}\right) \otimes B=$
$\left(\begin{array}{cccc}-2 g B & & \\ & 0 & & \\ & & 0 & \\ & & & 2 g B\end{array}\right)$
$|\downarrow\rangle_{1}|\psi\rangle_{2}$
$|\downarrow\rangle_{1}|\uparrow\rangle_{2}$
$|\uparrow\rangle_{1}|\psi\rangle_{2}$
$|\uparrow\rangle_{1}|\uparrow\rangle_{2}$

Long-wavelength magnetic field B (environment) couples to spins
Effect: Random "Collective Dephasing":
$\left|\psi_{j}\right\rangle=a_{j}|0\rangle_{j}+b_{j}|1\rangle_{j} \mapsto a_{j}|0\rangle_{j}+e^{i \theta} b_{j}|1\rangle_{j}$
random but j-independent

DFS encoding

$$
\begin{aligned}
& |0\rangle_{L}=|0\rangle_{1} \otimes|1\rangle_{2} \\
& |1\rangle_{L}=|1\rangle_{1} \otimes|0\rangle_{2}
\end{aligned}
$$

Why it Works

Collective dephasing:

$$
|\psi\rangle_{j}=a_{j}|0\rangle_{j}+b_{j}|1\rangle_{j} \mapsto a_{j}|0\rangle_{j}+e^{i \theta} b_{j}|1\rangle_{j}
$$

Case of two qubits:
$|0\rangle \otimes|0\rangle \mapsto|0\rangle \otimes|0\rangle \equiv|00\rangle$
$|0\rangle \otimes|1\rangle \mapsto|0\rangle \otimes\left(e^{i \theta}|1\rangle\right)=e^{i \theta}|01\rangle$
$|1\rangle \otimes|0\rangle \mapsto\left(e^{i \theta}|1\rangle\right) \otimes|0\rangle \equiv e^{i \theta}|10\rangle$
$|1\rangle \otimes|1\rangle \mapsto\left(e^{i \theta}|1\rangle\right) \otimes\left(e^{i \theta}|1\rangle\right) \equiv e^{2 i \theta}|11\rangle$

Why it Works

Collective dephasing:

$$
|\psi\rangle_{j}=a_{j}|0\rangle_{j}+b_{j}|1\rangle_{j} \mapsto a_{j}|0\rangle_{j}+e^{i \theta} b_{j}|1\rangle_{j}
$$

Case of two qubits:
$|0\rangle \otimes|0\rangle \mapsto|0\rangle \otimes|0\rangle \equiv|00\rangle$
$\left.|0\rangle \otimes|1\rangle \mapsto|0\rangle \otimes\left(e^{i 0}|1\rangle\right) \equiv e^{i 0}|01\rangle\right) \equiv|0\rangle_{L}$
$\left.|1\rangle \otimes|0\rangle \mapsto\left(e^{i \theta}|1\rangle\right) \otimes|0\rangle=e^{i \theta}(10\rangle\right) \equiv|1\rangle_{L}$
$|1\rangle \otimes|1\rangle \mapsto\left(e^{i \theta}|1\rangle\right) \otimes\left(e^{i \theta}|1\rangle\right) \equiv e^{2 i \theta}|11\rangle$

Global phase physically irrelevant:
$|\psi\rangle_{L}=a|0\rangle_{L}+b|1\rangle_{L} \quad$ is decoherence-free:
A 2-dimensional protected subspace.

Why it Works

Collective dephasing:

$$
|\psi\rangle_{j}=a_{j}|0\rangle_{j}+b_{j}|1\rangle_{j} \mapsto a_{j}|0\rangle_{j}+e^{i \theta} b_{j}|1\rangle_{j}
$$

Case of two qubits:
$|0\rangle \otimes|0\rangle \mapsto|0\rangle \otimes|0\rangle \equiv|00\rangle$
$\left.|0\rangle \otimes|1\rangle \mapsto|0\rangle \otimes\left(e^{i \theta}|1\rangle\right) \equiv e^{i \theta}|01\rangle\right) \equiv|0\rangle_{L}$
pop quiz:
Are the states $|00\rangle$ and $|11\rangle$
also in a DFS?
$\left.|1\rangle \otimes|0\rangle \mapsto\left(e^{i \theta}|1\rangle\right) \otimes|0\rangle=e^{i \theta}(10\rangle\right)=|1\rangle_{L}$
$|1\rangle \otimes|1\rangle \mapsto\left(e^{i \theta}|1\rangle\right) \otimes\left(e^{i \theta}|1\rangle\right) \equiv e^{2 i \theta}|11\rangle$

Global phase physically irrelevant:
$|\psi\rangle_{L}=a|0\rangle_{L}+b|1\rangle_{L} \quad$ is decoherence-free:
A 2-dimensional protected subspace.

Generalization: Noiseless Subsystems

[E. Knill, R. Laflamme and L. Viola, PRL 84, 2525 (2000)]
The dimension of the DFS \mathcal{H}_{D} equals the degeneracy of the 1-dimensional irreducible representation (irrep) of A.

1D irreps condition not needed...

Generalization: Noiseless Subsystems

[E. Knill, R. Lafilamme and L. Viola, PRL 84, 2525 (2000)]
The dimension of the DFS \mathcal{H}_{D} equals the degeneracy of the 1-dimensional irreducible representation (irrep) of A.

1D irreps condition not needed...

A theorem from C^{*} algebras:

Model of decoherence:
$H_{S B}=\sum_{\alpha} S_{\alpha} \otimes B_{\alpha}$
Associative algebra $\mathrm{A}=$ polynomials $\left\{, \mathrm{S}_{\alpha}, S_{\alpha}^{\dagger}\right\}$
Matrix representation over $\mathbb{C}^{2^{N}}$:

Hilbert space decomposition:

$$
\mathbb{C}^{2^{N}} \cong \oplus \mathbb{C}^{n_{j}} \otimes \mathbb{C}^{d_{j}}
$$

Generalization: Noiseless Subsystems

[E. Knill, R. Laflamme and L. Viola, PRL 84, 2525 (2000)]
The dimension of the DFS \mathcal{H}_{D} equals the degeneracy of the 1-dimensional irreducible representation (irrep) of A.

1D irreps condition not needed...

A theorem from C^{*} algebras:

Model of decoherence:
$H_{S B}=\sum_{\alpha} S_{\alpha} \otimes B_{\alpha}$

Associative algebra $\mathrm{A}=$ polynomials $\left\{, \mathrm{S}_{\alpha}, \mathrm{S}_{\alpha}^{\dagger}\right\}$
Matrix representation over $\mathbb{C}^{2^{N}}$:

Hilbert space decomposition:

$$
\mathbb{C}^{2^{N}} \cong \oplus \mathbb{C}^{n_{j}} \otimes \mathbb{C}^{d_{j}}
$$

code subsystem

$n_{J}>1$ iff \exists symmetry in system-env. interaction

Isotropic Quantum Errors: Collective Decoherence Model

Describes, e.g., low-
T decoherence due to phonons in various solid state QC proposals

Isotropic Quantum Errors: Collective Decoherence Model

Describes, e.g., low-
T decoherence due to phonons in various solid state QC proposals

Error model, N qubits:
"Collective Decoherence"

$$
H_{S B}=\sum_{\alpha=x, y, z} \underbrace{\left(\sigma_{1}^{\alpha}+\cdots+\sigma_{N}^{\alpha}\right)}_{S_{\alpha}=\text { total spin operator }} \otimes B_{\alpha}
$$

Isotropic Quantum Errors:

 Collective Decoherence ModelDescribes, e.g., lowT decoherence due to phonons in various solid state QC proposals

Error model, N qubits:
$|\psi\rangle \mapsto \begin{cases}|\psi\rangle & \text { prob. } p_{0} \\ U_{x}(1) \otimes \cdots \otimes U_{x}(N) & \text { prob. } p_{1} \\ U_{Y}(1) \otimes \cdots \otimes U_{Y}(N) & \text { prob. } p_{2} \\ U_{Z}(1) \otimes \cdots \otimes U_{Z}(N) & \text { prob. } p_{3}\end{cases}$

Do irreps analysis of n copies of su(2)...

All Decoherence-Free Subspaces/Subsystems for Collective Decoherence
Hilbert space decomposition:

$\left|0_{L}\right\rangle==\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$

All Decoherence-Free Subspaces/Subsystems for Collective Decoherence
Hilbert space decomposition:

All Decoherence-Free Subspaces/Subsystems for Collective Decoherence
Hilbert space decomposition:

$\left|0_{L}\right\rangle=$

$$
=\frac{1}{2}(|01\rangle-|10\rangle)(|01\rangle-|10\rangle)
$$

What is the "Volume" of a DFS/NS?

$$
\text { Degeneracy for given } J, M=\text { dimension of DFS/NS } \equiv D_{J}(n)=\frac{n!(2 J+1)}{(n / 2+J+1)!(n / 2-J)!}
$$

$$
\Rightarrow \text { code rate } \equiv \frac{\text { no. of encoded qubits }}{\text { no. of physical qubits }} \stackrel{(J=0)}{=} \frac{\log _{2} D_{0}(n)}{n} \stackrel{n \rightarrow \infty}{\longrightarrow} 1-\frac{3}{2} \frac{\log _{2} n}{n}
$$

What is the "Volume" of a DFS/NS?

$$
\begin{aligned}
& \text { Degeneracy for given } J, M=\text { dimension of DFS/NS } \equiv D_{J}(n)=\frac{n!(2 J+1)}{(n / 2+J+1)!(n / 2-J)!} \\
& \Rightarrow \text { code rate } \equiv \frac{\text { no. of encoded qubits }}{\text { no. of physical qubits }} \stackrel{(J=0)}{=} \frac{\log _{2} D_{0}(n)}{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow 1-\frac{3}{2} \frac{\log _{2} n}{n}}
\end{aligned}
$$

DFS's for collective decoherence asymptotically fill the Hilbert space!

Computation Inside a U.I. DFS/NS

So far have storage. What about computation?

To prevent decoherence, computation should never leave DFS/NS. Which logic operations are compatible?

Computation Inside a U.I. DFS/NS

So far have storage. What about computation?

To prevent decoherence, computation should never leave DFS/NS. Which logic operations are compatible?

Error algebra:
$A \cong \overbrace{j} I_{j} \otimes M_{d_{j}}(\mathbb{C})$

Code subsystem:
$\mathbb{C}^{2^{v}} \cong \oplus \mathbb{C}^{n_{j}} \otimes \mathbb{C}^{d_{j}}$
Commutant $=$ operators commuting with A
$A^{\prime} \cong \oplus M_{n_{j}}^{\prime}(\mathbb{C}) \otimes I_{d_{j}}$
The allowed logic operations!

Computation Inside a U.I. DFS/NS

So far have storage. What about computation?

To prevent decoherence, computation should never leave DFS/NS.
Which logic operations are compatible?

Error algebra:
$A \cong \oplus{ }_{j} I_{n_{j}} \otimes M_{d_{j}}(\mathbb{C})$

Code subsystem:
$\mathbb{C}^{2^{N}} \cong \oplus \mathbb{C}^{n_{j}} \otimes \mathbb{C}^{d_{j}}$
Commutant $=$ operators commuting with A Universal quantum
computation over
DFS/NS is possible
using "exchange
Hamiltonians", e.g.,
Heisenberg interaction:
$A^{\prime} \cong \oplus_{j} M_{n_{j}}^{\prime}(\mathbb{C}) \otimes I_{d_{j}}$
The allowed logic operations!

$$
H_{\text {Heis }}=\sum_{i j} \frac{J_{i j}}{2}\left(\sigma_{i}^{x} \sigma_{j}^{x}+\sigma_{i}^{y} \sigma_{j}^{y}+\sigma_{i}^{z} \sigma_{j}^{z}\right)
$$

Heisenberg Computation over DFS/ NS is Universal

- Heisenberg exchange interaction:

$$
H_{\text {Heis }}=\sum_{i, j} J_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right) \equiv \sum_{i, j} J_{i j} E_{i j}
$$

- Universal over collective-decoherence DFS
[J. Kempe, D. Bacon, D.A.L., B. Whaley, Phys. Rev. A 63, 042307 (2001)]

$$
A^{\prime} \cong \bigoplus_{J}^{\oplus} M_{n_{j}}^{\prime}(\mathbb{C}) \otimes I_{d_{J}}
$$

The allowed logic operations

Heisenberg Computation over DFS/ NS is Universal

- Heisenberg exchange interaction:

$$
H_{\text {Heis }}=\sum_{i, j} J_{i j}\left(X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right) \equiv \sum_{i, j} J_{i j} E_{i j}
$$

- Universal over collective-decoherence DFS
[J . Kempe, D. Bacon, D.A.L., B. Whaley, Phys. Rev. A 63, 042307 (2001)]
- Over 4-qubit DFS:

$$
A^{\prime} \cong \underset{J}{\oplus} M_{n_{j}}^{\prime}(\mathbb{C}) \otimes I_{d_{J}}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\left|0_{L}\right\rangle=\frac{1}{2}(|01\rangle-|10\rangle)(|01\rangle-|10\rangle) \text { The allowed logic operations } \\
\qquad\left|1_{L}\right\rangle=\frac{1}{2 \sqrt{3}}(2|0011\rangle+2|1100\rangle-(|0110\rangle+|1001\rangle+|1010\rangle+|0101\rangle)) \\
\bar{X}=-\frac{2}{\sqrt{3}}\left(E_{13}+\frac{1}{2} E_{12}\right) \quad \bar{Z}=-E_{12} \\
e^{i \theta \bar{X}} \text { and } e^{i \theta \bar{Z}} \text { generate arbitrary single encoded qubit gates } \\
\text { CNOT involves } 42 \text { elementary steps (D. Bacon, Ph.D. thesis) }
\end{array} \text { }
\end{aligned}
$$

- Implications for simplifying operation of spin-based quantum dot QCs

Experimental Verification of Decoherence-Free Subspaces

Paul G. Kwiat, ${ }^{\text {* }}$ Andrew J. Berglund, ${ }^{1} \dagger$ Joseph B. Altepeter, ${ }^{1}$ Andrew G. White ${ }^{1,2}$

In the beginning ...

Using spontaneous parametric down-conversion, we produce polarization-entangled states of two photons and characterize them using two-photon tomography to measure the density matrix. A controllable decoherence is imposed on the states by passing the photons through thick, adjustable birefringent elements. When the system is subject to collective decoherence, one particular entangled state is seen to be decoherence-free, as predicted by theory. Such decoherence-free systems may have an important role for the future of quantum computation and information processing.

Experimental Verification of Decoherence-Free Subspaces

Paul G. Kwiat, ${ }^{\text {* }}$ Andrew J. Berglund, ${ }^{1} \dagger$ Joseph B. Altepeter, ${ }^{1}$ Andrew G. White ${ }^{1,2}$

In the beginning ...

Using spontaneous parametric down-conversion, we pradionn malniontinn an tangled states of two photons and characterize them mography to measure the density matrix. A controlla Ar^{+}laser posed on the states by passing the photons through th $*$ gent elements. When the system is subject to coller particular entangled state is seen to be decoherenct theory. Such decoherence-free systems may have an
future of quantum computation and information proci

Experimental Verification of Decoherence-Free Subspaces

Paul G. Kwiat, ${ }^{1 *}$ Andrew J. Berglund, ${ }^{1} \dagger$ Joseph B. Altepeter, ${ }^{1}$ Andrew G. White ${ }^{1,2}$

Using spontaneous parametric down-conversion, we pradion malarimetinn an tangled states of two photons and characterize them mography to measure the density matrix. A controlla Ar^{+}laser posed on the states by passing the photons through th $*$. gent elements. When the system is subject to collar particular entangled state is seen to be decoherence theory. Such decoherence-free systems may have an future of quantum computation and information proc

D

Experimental Verification of Decoherence-Free Subspaces

Paul G. Kwiat, ${ }^{1 *}$ Andrew J. Berglund, ${ }^{1} \dagger$ Joseph B. Altepeter, ${ }^{1}$ Andrew G. White ${ }^{1,2}$

Using spontaneous parametric down-conversion, we pradion malarimotinn an tangled states of two photons and characterize them mography to measure the density matrix. A controlla posed on the states by passing the photons through th $*$ gent elements. When the system is subject to coller particular entangled state is seen to be decoherenct theory. Such decoherence-free systems may have an future of quantum computation and information proci

REPORTS

Experimental Realization of Noiseless Subsystems for Quantum Information Processing

Lorenza Viola, ${ }^{\text {¹ }} \dagger$ Evan M. Fortunato, ${ }^{2 *}$ Marco A. Pravia, ${ }^{\text {² }}$ Emanuel Knill, ${ }^{1}$ Raymond Laflamme, ${ }^{1}$ David G. Cory ${ }^{2}$

We demonstrate the protection of one bit of quantum information against all collective noise in three nuclear spins. Because no subspace of states offers this protection, the quantum bit was encoded in a proper noiseless subsystem. We therefore realize a general and efficient method for protecting quantum information. Robustness was verified for a full set of noise operators that do not distinguish the spins. Verification relied on the most complete exploration of engineered decoherence to date. The achieved fidelities show improved information storage for a large, noncommutative set of errors.

Decoherence-Free Quantum Information Processing with Four-Photon Entangled States

Mohamed Bourennane, ${ }^{1,2}$ Manfred Eibl, ${ }^{1,2}$ Sascha Gaertner, ${ }^{1,2}$ Christian Kurtsiefer, ${ }^{2}$ Adán Cabello, ${ }^{3}$ and Harald Weinfurter ${ }^{1,2}$
${ }^{1}$ Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
${ }^{2}$ Sektion Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany
${ }^{3}$ Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain (Received 22 August 2003; published 9 March 2004)

Decoherence-free states protect quantum information from collective noise, the predominant cause of decoherence in current implementations of quantum communication and computation. Here we demonstrate that spontaneous parametric down conversion can be used to generate four-photon states which enable the encoding of one qubit in a decoherence-free subspace. The immunity against noise is verified by quantum state tomography of the encoded qubit. We show that particular states of the encoded qubit can be distinguished by local measurements on the four photons only.

Decoherence-Free Quantum Information Processing with Four-Photon Entangled States

Mohamed Bourennane, ${ }^{1,2}$ Manfred Eibl, ${ }^{1,2}$ Sascha Gaertner, ${ }^{1,2}$ Christian Kurtsiefer, ${ }^{2}$ Adán Cabello, ${ }^{3}$ and Harald Weinfurter ${ }^{1,2}$
${ }^{1}$ Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
${ }^{2}$ Sektion Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany
${ }^{3}$ Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain (Received 22 August 2003; published 9 March 2004)

Decoherence-free states protect quantum information from collective noise, the predominant cause of decoherence in current implementations of quantum communication and computation. Here we demonstrate that spontaneous parametric down conversion which enable the encoding of one qubit in a decoherence-fre verified by quantum state tomography of the encoded qu encoded qubit can be distinguished by local measurements

FIG. 4 (color online). Propagation of the logical qubit $\left|\Psi_{L}\right\rangle=$ $\left(\sqrt{3}\left|\Phi_{0}\right\rangle-\left|\Phi_{1}\right\rangle\right) / 2$: (a) and (b) show the experimentally obtained density matrices before $\left(\rho_{\text {in }}\right)$ and after $\left(\rho_{\text {out }}\right)$ passage through a noisy quantum channel. The encoding in a DF subspace protected the transmission, leading to a fidelity of $F_{\rho_{\text {in }}, \rho_{\text {out }}}=0.9958 \pm 0.0759$ in the presence of noise (overall measurement time 12 h).

What about symmetry breaking?

D.L., I.L. Chuang, K.B. Whaley, PRL 81, 2594 (1998); D. Bacon, D.L., K.B. Whaley, PRA 60, 1944 (1999)

Symmetry breaking: unequal coupling constants, lowering of symmetry by a perturbation, etc.

Introduce a perturbation via $H_{S B} \mapsto H_{S B}+\epsilon \Delta H,\|\Delta H\|=1$

Theory shows that fidelity depends on ϵ only to second order.

Robustness of DFS to symmetry breaking perturbations

Experimental Investigation of a Two-Qubit Decoherence-Free Subspace

J. B. Altepeter, ${ }^{1,2}$ P. G. Hadley, ${ }^{2}$ S. M. Wendelken, ${ }^{2}$ A. J. Berglund, ${ }^{2, *}$ and P. G. Kwiat ${ }^{1,2,4}$
${ }^{1}$ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
${ }^{2}$ Physics Division, P-23, Los Alamos National Laboratories, Los Alamos, New Mexico 87545, USA (Received 31 May 2003; published 9 April 2004)
We thoroughly explore the phenomenon of a decoherence-free subspace (DFS) for two-qubit systems. Specifically, we both collectively and noncollectively decohere entangled polarization-encoded twoqubit states using thick birefringent crystals. These results characterize the basis-dependent effect of decoherence on the four Bell states, the robustness of the DFS state against perturbations in the assumption of collective decoherence, and the existence of a DFS for each type of stable noncollective decoherence. Finally, we investigate the effects of collective and noncollective dissipation.

Robustness of DFS to symmetry breaking perturbations

Strong Symmetry Breaking

REPORTS

A Decoherence-Free Quantum Memory Using Trapped Ions

D. Kielpinski, ${ }^{1 *}$ V. Meyer, ${ }^{1}$ M. A. Rowe, ${ }^{1}$ C. A. Sackett, ${ }^{1}$ W. M. Itano, ${ }^{1}$ C. Monroe, ${ }^{2}$ D. J. Wineland ${ }^{1}$

We demonstrate a decoherence-free quantum memory of one qubit. By encoding the qubit into the decoherence-free subspace (DFS) of a pair of trapped ${ }^{9} \mathrm{Be}^{+}$ions, we protect the qubit from environment-induced dephasing that limits the storage time of a qubit composed of a single ion. We measured the storage time under ambient conditions and under interaction with an engineered noisy environment and observed that encoding into the DFS increases the storage time by up to an order of magnitude. The encoding reversibly transfers an arbitrary qubit stored in a single ion to the DFS of two ions.

Bare qubit:
two hyperfine states of trapped ${ }^{9} \mathrm{Be}^{+}$ion

Chief decoherence sources:
(i) fluctuating long-wavelength ambient magnetic fields;
(ii) heating of ion CM motion during computation: a symmetry-breaking process
DFS encoding: into pair of ions

$$
|0\rangle_{t}=|0\rangle_{1} \otimes|1\rangle_{2} \quad|1\rangle_{t}=|1\rangle_{2} \otimes|0\rangle_{2}
$$

Need a way to deal with symmetry breaking...

Intermission \& Bathroom Break

