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Feel free to interrupt and ask lots of questions!
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logical 0
logical 1

How to reliably store a single bit?

A noiseless subspace.
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Decoherence-free subspace (DFS): H = A⊕ B
C = {all states ρ : A→ A} such that E(ρ) = ρ

Quantum error correcting code (QEC): H = A⊕ B
C = {all states ρ : A→ A} such that ∃CP map R
for which R ◦ E(ρ) = ρ

A DFS is a QEC with trivial recovery operation: R = I

A QEC is a DFS with respect to the map R ◦ E



NS as an OQEC, OQEC as an NSNS as an OQEC, OQEC as an NS

Noiseless subsystem (NS): H = A⊕ B, A = N ⊗ G
C = {all states ρ : A→ A} such that TrGE(ρ) = TrGρ

Operator QEC (OQEC): H = A⊕ B, A = N ⊗ G
C = {all states ρ : A→ A} such that ∃CP map R
for which TrGR ◦ E(ρ) = TrGρ

An NS is an OQEC with trivial recovery operation: R = I

An OQEC is an NS with respect to the map R ◦ E



Unitarily Invariant DFSUnitarily Invariant DFS

Unitarily Invariant DFS:=Subspace of full system 
Hilbert space in which evolution is purely unitary



Unitarily Invariant DFSUnitarily Invariant DFS

Unitarily Invariant DFS:=Subspace of full system 
Hilbert space in which evolution is purely unitary

More precisely:

Let the system Hilbert space H decompose into a direct sum as H = HD⊕H⊥D,
and partition the system state ρS accordingly into blocks: ρS =

µ
ρD ρ2
ρ†2 ρ3

¶
.

Assume ρD(0) 6= 0.

Then HD is called decoherence-free iff the initial and final DFS-blocks of ρS
are unitarily related:

ρD(t) = UDρD(0)U
†
D,

where UD is a unitary matrix acting on HD.

Note imperfect initialization!
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ρ0 =
P

k EkρE
†
k ≡ E(ρ)

P
k E

†
kEk = I

Given a CP map:

Theorem
A necessary and sufficient condition for the existence of a DFS HD with

respect to the CP map E is that all Kraus operators have a matrix representation
of the form

Ek =

µ
ckUD 0
0 Bk

¶
,

where UD is unitary, ck are scalars satisfying
P

k |ck|2 = 1, and Bk are arbitrary
operators on H⊥D satisfying

P
k B

†
kBk = I.

Meaning: Ek act unitarily on the DFS



U.I. DFS Conditions for Master EquationsU.I. DFS Conditions for Master Equations

Given a Markovian master equation:

Theorem
A necessary and sufficient condition for the existence of a DFS HD with

respect to the Markovian master equation above is that the Lindblad operators
Fα and the system Hamiltonian HS have the block-diagonal form

HS =

µ
HD 0
0 H⊥D

¶
, Fα =

µ
cαI 0
0 Bα

¶
,

where HD and H
⊥
D are Hermitian, cα are scalars, and Bα are arbitrary operators

on H⊥D.

dρ
dt = −i[HS , ρ] + 1

2

P
α 2FαρF

†
α − ρF †αFα − F †αFαρ

Meaning: Fα act as identity on the DFS, while HS preserves the DFS



ExerciseExercise

1. Prove sufficiency (easy) and necessity (not so easy) of the U.I. 
DFS conditions for CP maps and Markovian master equations

2. Generalize to NS, QEC, OQEC
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How do we find and construct a DFS?



 

Under Hamiltonian dynamics system and bath evolve jointly 
subject to the Schrodinger equation with th

subspac

e Hamiltonian .

Find a  where acts trivially, 
i.e.:                

e
  

SB

BS SBH H H H

S BH α αα=

= + +

⊗∑
                           make SB S BH I O∝ ⊗

U.I. DFS Conditions for Hamiltonian DynamicsU.I. DFS Conditions for Hamiltonian Dynamics

Also, remember that HS must preserve the DFS.



 

Under Hamiltonian dynamics system and bath evolve jointly 
subject to the Schrodinger equation with th

subspac

e Hamiltonian .

Find a  where acts trivially, 
i.e.:                

e
  

SB

BS SBH H H H

S BH α αα=

= + +

⊗∑
                           make SB S BH I O∝ ⊗

Theorem

degeneracy symmetry

U.I. DFS Conditions for Hamiltonian DynamicsU.I. DFS Conditions for Hamiltonian Dynamics

Also, remember that HS must preserve the DFS.

Let A = alg{I, Sα, S†α}.
Assume [HS , A] = 0.
The dimension of the DFS HD equals the degeneracy of the 1-dimensional
irreducible representation (irrep) of A.
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Are the states
|00i and |11i
also in a DFS?



1D irreps condition not needed…

The dimension of the DFS HD equals the degeneracy of the 1-dimensional
irreducible representation (irrep) of A.

Generalization: Noiseless SubGeneralization: Noiseless Subsystemssystems 
[E. Knill, R. Laflamme and L. Viola, PRL 84, 2525 (2000)][E. Knill, R. Laflamme and L. Viola, PRL 84, 2525 (2000)]
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Isotropic Quantum Errors: Isotropic Quantum Errors: 
Collective Decoherence ModelCollective Decoherence Model

ˆ( )YB t y
1ψ
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                          prob. 
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T decoherence due 
to phonons in 
various solid state 
QC proposals

Do irreps analysis of n copies of su(2)…
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!(2 1)Degeneracy for given ,  = dimension of DFS/NS ( )  

/ 2 1 ! / 2 !J
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n J n J
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DFS’s for collective decoherence
asymptotically fill the Hilbert space!
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So far have storage. What about computation?

To prevent decoherence, computation should never leave DFS/NS.
Which logic operations are compatible?
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A I Universal quantum 
computation over 
DFS/NS is possible 
using “exchange 
Hamiltonians”, e.g., 
Heisenberg interaction:

Heis 2
ij y yx x z z

i j i j i j
ij

H
J

σ σ σ σ σ σ⎛ ⎞
⎜ ⎟
⎝ ⎠

= + +∑



Heisenberg Computation over DFS/NS is Universal

• Heisenberg exchange interaction:

• Universal over collective-decoherence DFS 
[J. Kempe, D. Bacon, D.A.L., B. Whaley, Phys. Rev. A 63, 042307 (2001)]

• Over 4-qubit DFS:

CNOT involves 14 elementary steps (D. Bacon, Ph.D. thesis)

• Implications for simplifying operation of spin-based quantum dot QCs

HHeis =
P

i,j Jij(XiXj + YiYj + ZiZj) ≡
P

i,j JijEij

≅ ⊕ ⊗' ' ( )

The allowed logic operations
J Jn dJ

A M I
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• Universal over collective-decoherence DFS 
[J. Kempe, D. Bacon, D.A.L., B. Whaley, Phys. Rev. A 63, 042307 (2001)]

• Over 4-qubit DFS:

CNOT involves 42 elementary steps (D. Bacon, Ph.D. thesis)

• Implications for simplifying operation of spin-based quantum dot QCs

HHeis =
P

i,j Jij(XiXj + YiYj + ZiZj) ≡
P

i,j JijEij

X̄ = − 2√
3
(E13 +

1
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eiθX̄ and eiθZ̄ generate arbitrary single encoded qubit gates
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2 3L = + − + + +

≅ ⊕ ⊗' ' ( )

The allowed logic operations
J Jn dJ

A M I



In the 
beginning …



In the 
beginning …





13C-labeled alanine





0Φ =

1Φ =



What about symmetry breaking? 
D.L., I.L. Chuang, K.B. Whaley, PRL 81, 2594 (1998); D. Bacon, D.L., K.B. Whaley, PRA 60, 1944 (1999)

Symmetry breaking: 
unequal coupling constants, lowering of symmetry by a perturbation, etc.

Introduce a perturbation via HSB 7→ HSB + ²∆H, k∆Hk = 1

Theory shows that fidelity depends on ² only to second order.



Robustness of DFS to symmetry breaking perturbationsRobustness of DFS to symmetry breaking perturbations



angle strength

Robustness of DFS to symmetry breaking perturbationsRobustness of DFS to symmetry breaking perturbations



DFS-encoded

Bare qubits

1 2 1 2
0 0 1 1 1 0    

L L
= ⊗ = ⊗

Bare qubit: 
two hyperfine states of 
trapped 9Be+ ion

Chief decoherence sources:
(i) fluctuating long-wavelength 

ambient magnetic fields;
(ii) heating of ion CM motion 

during computation: a 
symmetry-breaking process

DFS encoding: into pair of ions

Strong Symmetry Breaking



Need a way to deal with symmetry breakingNeed a way to deal with symmetry breaking……



Intermission & Bathroom BreakIntermission & Bathroom Break
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