Part 2: Mostly Dynamical Decoupling

Need a way to deal with symmetry breaking...

NMR to the Rescue: Removal of Decoherence via Spin Echo=Time Reversal

From: Coherent averaging techniques

Coherent control of nuclear spin Hamiltonians in high-resolution NMR spectroscopy.

Hahn spin echo idea

E.L. Hahn, PR **80**, 580 (1950); U. Haeberlen & J.S. Waugh, PR **175**, 453 (1968).

The "race-track" echo: Effective time reversal

Dynamical Decoupling Basics

Dynamical Decoupling Basics

Ideal (zero-width) pulses, and ignoring $H_{\rm B}$:

$$P \exp(-i\tau H_{\rm SB})P^{\dagger} \exp(-i\tau H_{\rm SB}) = \exp(-i\tau P H_{\rm SB}P^{\dagger}) \exp(-i\tau H_{\rm SB})$$
$$= \exp(i\tau H_{\rm SB}) \exp(-i\tau H_{\rm SB}) = I$$

Dynamical Decoupling = Symmetrization

Viola & Lloyd Phys. Rev. A 58, 2733 (1998); Byrd & Lidar, Q. Inf. Proc. 1, 19 (2002)

System-bath Hamiltonian: $H_{SB} = \sum S_{\alpha} \otimes B_{\alpha}$ bath system -HApply rapid pulses flipping sign of S_{α} $>\sigma$ σ σ_{x}

System-bath Hamiltonian: $H_{SB} = \sum_{\alpha} S_{\alpha} \otimes B_{\alpha}$ system bath Apply rapid pulses flipping sign of S_{α} $-H_{SB}$

System-bath Hamiltonian: $H_{SB} = \sum S_{\alpha} \otimes B_{\alpha}$ bath system -HApply rapid pulses flipping sign of S_{α} ►σ, σ H_{SB} σ More general symmetrization: H_{SR} averaged to zero. σ . H_{SB} σ_x

Quantum Information Sci

Dealing with Symmetry Breaking: Creating Collective Dephasing Conditions L.-A. Wu, D.A.L., Phys. Rev. Lett. 88, 207902 (2002)

General two-qubit dephasing: $H_{SB} = \sigma_1^z \otimes B_1 + \sigma_2^z \otimes B_2$

$$=\frac{1}{2}\left(\sigma_{1}^{z}-\sigma_{2}^{z}\right)\otimes\left(B_{1}-B_{2}\right)+\frac{1}{2}\left(\sigma_{1}^{z}+\sigma_{2}^{z}\right)\otimes\left(B_{1}+B_{2}\right)$$

Dealing with Symmetry Breaking: Creating Collective Dephasing Conditions L.-A. Wu, D.A.L., Phys. Rev. Lett. 88, 207902 (2002)

General two-qubit dephasing: $H_{SB} = \sigma_1^z \otimes B_1 + \sigma_2^z \otimes B_2$

 $=\frac{1}{2}\left(\sigma_1^z-\sigma_2^z\right)\otimes\left(B_1-B_2\right)+\frac{1}{2}\left(\sigma_1^z+\sigma_2^z\right)\otimes\left(B_1+B_2\right)$

Assume: controllable exchange $X = \frac{1}{2} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y) + \alpha \sigma_1^z \sigma_2^z$.

 $\{X,Z\} = 0 \implies XZX = -Z$

Dealing with Symmetry Breaking: Creating Collective Dephasing Conditions L.-A. Wu, D.A.L., Phys. Rev. Lett. 88, 207902 (2002)

<u>General two-qubit dephasing:</u> $H_{SB} = \sigma_1^z \otimes B_1 + \sigma_2^z \otimes B_2$

 $=\frac{1}{2}\left(\sigma_{1}^{z}-\sigma_{2}^{z}\right)\otimes\left(B_{1}-B_{2}\right)+\frac{1}{2}\left(\sigma_{1}^{z}+\sigma_{2}^{z}\right)\otimes\left(B_{1}+B_{2}\right)$

Assume: controllable exchange $X = \frac{1}{2} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y) + \alpha \sigma_1^z \sigma_2^z$.

 $\{X,Z\} = 0 \implies XZX = -Z$

"Time reversal" Dynamical Decoupling pulse sequence:

$$\exp(-iH_{SB}t)\left[\exp(-i\frac{\pi}{2}X)\exp(-iH_{SB}t)\exp(i\frac{\pi}{2}X)\right] = \exp(-it\left(\sigma_{1}^{z}+\sigma_{2}^{z}\right)\otimes\left(B_{1}+B_{2}\right))$$

Collective Dephasing

$$X \leftarrow H_{SB}t \longrightarrow X \leftarrow H_{SB}t \longrightarrow = 2t$$
 Coll.Deph.

Heisenberg is "Super-Universal"

Same method works, e.g., for spin-coupled guantum dots QC: By BB pulsing of $H_{\text{Heis}} = \frac{1}{2} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y + \sigma_1^z \sigma_2^z)$

collective decoherence conditions can be created:

$$H_{\rm SB} = \sum_{i=1}^{n} g_i^x \sigma_i^x \otimes B_i^x + g_i^y \sigma_i^y \otimes B_i^y + g_i^z \sigma_i^z \otimes B_i^z$$
$$\longrightarrow S_x \otimes B_x + S_y \otimes B_y + S_z \otimes B_z$$

Requires sequence of 6 $\pi/2$ pulses to create collective decoherence conditions over blocks of 4 qubits. Leakage elimination requires 7 more pulses. Details: L.-A. Wu, D.A.L., *Phys. Rev. Lett.* **88**, 207902 (2002); L.A. Wu, M.S. Byrd, D.A.L., *Phys. Rev. Lett.* **89**, 127901 (2002).

Earlier DFS work showed universal QC with Heisenberg interaction alone possible [Bacon, Kempe, D.A.L., Whaley, *Phys. Rev. Lett.* **85**, 1758 (2000)]: All ingredients available for Heisenberg-only QC

Analysis of Dynamical Decoupling

Decoherence: Isolated vs Open System Evolution

Isolated system: $H = H_S$

 $|\psi(t)
angle = U_S(t)|\psi(0)
angle \quad \dot{U}_S = -iH_SU_S \quad U_S(0) = I$ equivalently: $|\psi(t)
angle\langle\psi(t)| = U_S(t)|\psi(0)
angle\langle\psi(0)|U_S^{\dagger}(t)$

Decoherence: Isolated vs Open System Evolution

Isolated system: $H = H_S$

 $|\psi(t)\rangle = U_S(t)|\psi(0)\rangle$ $\dot{U}_S = -iH_SU_S$ $U_S(0) = I$ equivalently: $|\psi(t)\rangle\langle\psi(t)| = U_S(t)|\psi(0)\rangle\langle\psi(0)|U_S^{\dagger}(t)$

Open system: $H = H_S + H_B + H_{SB}$

 $\rho_{SB}(t) = U(t)\rho_{SB}(0)U^{\dagger}(t) \qquad \dot{U} = -iHU \quad U(0) = I$

 $\rho_S(t) = \mathrm{Tr}_B \rho_{SB}(t)$

 \neq unitary transformation of $\rho_S(0)$ (except when there is a decoherence-free subspace)

Decoherence: Isolated vs Open System Evolution

Isolated system: $H = H_S$

$$\begin{split} |\psi(t)\rangle &= U_S(t)|\psi(0)\rangle \qquad \dot{U}_S = -iH_SU_S \quad U_S(0) = I \\ \text{equivalently:} \ |\psi(t)\rangle\langle\psi(t)| = U_S(t)|\psi(0)\rangle\langle\psi(0)|U_S^{\dagger}(t) \end{split}$$

Open system: $H = H_S + H_B + H_{SB}$

 $\rho_{SB}(t) = U(t)\rho_{SB}(0)U^{\dagger}(t) \qquad \dot{U} = -iHU \quad U(0) = I$

 $\rho_S(t) = \mathrm{Tr}_B \rho_{SB}(t)$

 \neq unitary transformation of $\rho_S(0)$ (except when there is a decoherence-free subspace)

decoherence:

$$\|\rho_S(t) - |\psi(t)\rangle\langle\psi(t)|\| > 0$$

which norm?

Kolmogorov Distance and Quantum Measurements (I)

Given two classical probability distributions $\{p_i^{(1)}\}\$ and $\{p_i^{(2)}\}\$, their deviation is measured by the Kolmogorov distance

$$D(p^{(1)}, p^{(2)}) \equiv \frac{1}{2} \sum_{i} |p_i^{(1)} - p_i^{(2)}|$$

Kolmogorov Distance and Quantum Measurements (I)

Given two classical probability distributions $\{p_i^{(1)}\}\$ and $\{p_i^{(2)}\}\$, their deviation is measured by the Kolmogorov distance

$$D(p^{(1)}, p^{(2)}) \equiv \frac{1}{2} \sum_{i} |p_i^{(1)} - p_i^{(2)}|$$

A quantum measurement can always be described in terms of a POVM (positive operator valued measure), i.e., a set of **positive** operators E_i satisfying $\sum_i E_i = I$, where *i* enumerates the possible measurement outcomes.

For a system initially in the state ρ , outcome *i* occurs with probability

$$p_i = \Pr(i|\rho) = \operatorname{Tr}(\rho E_i)$$

Kolmogorov Distance and Quantum Measurements (I)

Given two classical probability distributions $\{p_i^{(1)}\}\$ and $\{p_i^{(2)}\}\$, their deviation is measured by the Kolmogorov distance

$$D(p^{(1)}, p^{(2)}) \equiv \frac{1}{2} \sum_{i} |p_i^{(1)} - p_i^{(2)}|$$

A quantum measurement can always be described in terms of a POVM (positive operator valued measure), i.e., a set of **positive** operators E_i satisfying $\sum_i E_i = I$, where *i* enumerates the possible measurement outcomes.

For a system initially in the state ρ , outcome *i* occurs with probability

$$p_i = \Pr(i|\rho) = \operatorname{Tr}(\rho E_i)$$

Thus quantum measurements produce classical probability distributions.

Consider two quantum states $\rho^{(1)}[=|\psi(t)\rangle\langle\psi(t)|]$ and $\rho^{(2)}[=\rho_S(t)]$

Kolmogorov Distance and Quantum Measurements (II)

Compare measurement outcomes of same POVM on $\rho^{(1)}[=|\psi(t)\rangle\langle\psi(t)|]$ and $\rho^{(2)}[=\rho_S(t)]$:

Lemma:
$$\delta \equiv D(p_{\rho^{(1)}}, p_{\rho^{(2)}}) \le \|\rho^{(1)} - \rho^{(2)}\|_{\mathrm{Tr}}$$

$$||A||_{\mathrm{Tr}} \equiv \mathrm{Tr}\sqrt{A^{\dagger}A} = \sum(\mathrm{singular values}(A))$$

The bound is tight in the sense that it is saturated for the optimal measurement designed to distinguish the two states.

Partial trace decreases trace distance

Lemma:
$$\|\rho_S^{(1)} - \rho_S^{(2)}\|_{\mathrm{Tr}} \le \|\rho_{SB}^{(1)} - \rho_{SB}^{(2)}\|_{\mathrm{Tr}}$$

Partial trace decreases trace distance

Lemma:
$$\|\rho_S^{(1)} - \rho_S^{(2)}\|_{\mathrm{Tr}} \le \|\rho_{SB}^{(1)} - \rho_{SB}^{(2)}\|_{\mathrm{Tr}}$$

Partial trace decreases trace distance

Lemma:
$$\|\rho_S^{(1)} - \rho_S^{(2)}\|_{\mathrm{Tr}} \le \|\rho_{SB}^{(1)} - \rho_{SB}^{(2)}\|_{\mathrm{Tr}}$$

Conclusion: we can compare dynamics of ideal and actual systems over the joint system-bath space.

Ideal system: $H = H_S + H_B$

 $\rho_{SB}^{\text{ideal}}(t) = [U_S(t) \otimes U_B(t)]\rho_{SB}(0)[U_S^{\dagger}(t) \otimes U_B^{\dagger}(t)]$

 $\dot{U}_{S/B} = -iH_{S/B}U_{S/B} \quad U_{S/B}(0) = I$

Ideal system: $H = H_S + H_B$ $\rho_{SB}^{ideal}(t) = [U_S(t) \otimes U_B(t)]\rho_{SB}(0)[U_S^{\dagger}(t) \otimes U_B^{\dagger}(t)]$ $\dot{U}_{S/B} = -iH_{S/B}U_{S/B} \quad U_{S/B}(0) = I$ Actual system: $H = H_S + H_B + H_{SB}$ $\rho_{SB}(t) = U(t)\rho_{SB}(0)U^{\dagger}(t) \quad \dot{U} = -iHU \quad U(0) = I$

Ideal system: $H = H_S + H_B$ $\rho_{SB}^{\text{ideal}}(t) = [U_S(t) \otimes U_B(t)] \rho_{SB}(0) [U_S^{\dagger}(t) \otimes U_B^{\dagger}(t)]$ $U_{S/B} = -iH_{S/B}U_{S/B} \quad U_{S/B}(0) = I$ Actual system: $H = H_S + H_B + H_{SB}$ $\rho_{SB}(t) = U(t)\rho_{SB}(0)U^{\dagger}(t) \qquad \dot{U} = -iHU \quad U(0) = I$ Distance: $\|\rho_{SB}(t) - \rho_{SB}^{\text{ideal}}(t)\|_{\text{Tr}} = \|V(t)\rho_{SB}(0)V^{\dagger}(t) - \rho_{SB}(0)\|_{\text{Tr}}$ $V(t) \equiv U_{S}^{\dagger}(t) \otimes U_{B}^{\dagger}(t)U(t) \equiv \exp[-itH_{\text{eff}}(t)]$

Ideal system: $H = H_S + H_B$ $\rho_{SB}^{\text{ideal}}(t) = [U_S(t) \otimes U_B(t)] \rho_{SB}(0) [U_S^{\dagger}(t) \otimes U_B^{\dagger}(t)]$ $U_{S/B} = -iH_{S/B}U_{S/B} \quad U_{S/B}(0) = I$ Actual system: $H = H_S + H_B + H_{SB}$ $\rho_{SB}(t) = U(t)\rho_{SB}(0)U^{\dagger}(t) \qquad \dot{U} = -iHU \quad U(0) = I$ Distance: $\|\rho_{SB}(t) - \rho_{SB}^{\text{ideal}}(t)\|_{\text{Tr}} = \|V(t)\rho_{SB}(0)V^{\dagger}(t) - \rho_{SB}(0)\|_{\text{Tr}}$ $V(t) \equiv U_{S}^{\dagger}(t) \otimes U_{B}^{\dagger}(t)U(t) \equiv \exp[-itH_{\text{eff}}(t)]$ Lemma: $\|\rho_{SB}(t) - \rho_{SB}^{\text{ideal}}(t)\|_{\text{Tr}} \le t \|H_{\text{eff}}(t)\|_{\infty}$

follows from $\|e^{iA} - e^{iB}\|_{\infty} \le \|A - B\|_{\infty}; \|A\|_{\infty} \equiv \sup_{|v\rangle, \langle v|v\rangle = 1} \sqrt{\langle v|A^{\dagger}A|v\rangle} = \max \operatorname{sing.val.}(A)$

Kolmogorov Distance Bound from Effective Hamiltonian

Lemma:
$$\delta \equiv D(p_{\rho^{(1)}}, p_{\rho^{(2)}}) \le \|\rho^{(1)} - \rho^{(2)}\|_{\mathrm{Tr}}$$

Lemma:
$$\|\rho_S^{(1)} - \rho_S^{(2)}\|_{\mathrm{Tr}} \le \|\rho_{SB}^{(1)} - \rho_{SB}^{(2)}\|_{\mathrm{Tr}}$$

(trace distance bounds Kolmogorov distance)

(partial trace decreases distinguishability)

$$V(t) \equiv U_S^{\dagger}(t) \otimes U_B^{\dagger}(t) U(t) \equiv \exp[-itH_{\text{eff}}(t)]$$

Lemma:
$$\|\rho_{SB}(t) - \rho_{SB}^{\text{ideal}}(t)\|_{\text{Tr}} \le t \|H_{\text{eff}}(t)\|_{\infty}$$

 $\delta_{\text{actual,ideal}} \leq t \| H_{\text{eff}}(t) \|_{\infty} \equiv \eta(t) \equiv \text{noise strength}$

 $\delta_{\text{actual,ideal}} \leq t \| H_{\text{eff}}(t) \|_{\infty} \equiv \eta(t) \equiv \text{noise strength}$

Goal: reduce effective Hamiltonian.

Method: dynamical decoupling.

 $\delta_{\text{actual,ideal}} \leq t \| H_{\text{eff}}(t) \|_{\infty} \equiv \eta(t) \equiv \text{noise strength}$

Goal: reduce effective Hamiltonian.

Method: dynamical decoupling.

How do we compute $H_{\text{eff}}(t)$?

The Magnus expansion

$$\begin{aligned} \dot{U} &= -iH(t)U\\ U(t) &= e^{-itH_{\text{eff}}(t)}\\ H_{\text{eff}}(t) &= \frac{1}{t}\sum_{j=1}^{\infty}\Omega_j(t)\\ \Omega_1(t) &= \int_0^t dt_1 H(t_1) \qquad \Omega_2(t) = -\frac{i}{2}\int_0^t dt_1 \int_0^{t_1} dt_2[H(t_1), H(t_2)] \end{aligned}$$

Analysis of Dynamical Decoupling

Dynamical Decoupling Theory

"Symmetrizing group" of pulses $\{g_i\}$ and their inverses are applied in series:

$$(g_N^{\dagger} \mathbf{f} g_N) \cdots (g_2^{\dagger} \mathbf{f} g_2) (g_1^{\dagger} \mathbf{f} g_1) \approx \exp(-i\tau \sum_i g_i^{\dagger} H_{SB} g_i)$$
$$\mathbf{f} \equiv \exp(-iH_{SB} \tau)$$

first order Magnus expansion

Periodic DD: periodic repetition of the universal DD pulse sequence

Dynamical Decoupling Theory

"Symmetrizing group" of pulses $\{g_i\}$ and their inverses are applied in series:

$$(g_N^{\dagger} \mathbf{f} g_N) \cdots (g_2^{\dagger} \mathbf{f} g_2) (g_1^{\dagger} \mathbf{f} g_1) \approx \exp(-i\tau \sum_i g_i^{\dagger} H_{SB} g_i)$$
$$\mathbf{f} \equiv \exp(-iH_{SB} \tau)$$

Choose the pulses so that:

$$H_{SB} \mapsto H_{eff}^{(1)} \equiv \sum_{i} g_{i}^{\dagger} H_{SB} g_{i} = 0$$

first order Magnus expansion

Dynamical Decoupling Condition

Periodic DD: periodic repetition of the universal DD pulse sequence

Dynamical Decoupling Theory

"Symmetrizing group" of pulses $\{g_i\}$ and their inverses are applied in series:

$$(g_N^{\dagger} \mathbf{f} g_N) \cdots (g_2^{\dagger} \mathbf{f} g_2) (g_1^{\dagger} \mathbf{f} g_1) \approx \exp(-i\tau \sum_i g_i^{\dagger} H_{SB} g_i)$$
$$\mathbf{f} \equiv \exp(-iH_{SB} \tau)$$

first order Magnus expansion

Choose the pulses so that:

$$H_{SB} \mapsto H_{eff}^{(1)} \equiv \sum_{i} g_{i}^{\dagger} H_{SB} g_{i} = 0$$
 Dynamical Decoupling Condition

For a qubit the Pauli group $G = \{X, Y, Z, I\}$ (π pulses around all three axes) removes an *arbitrary* H_{SB} :

(XfX)(YfY)(ZfZ)(IfI) = XfZfXfZf

Periodic DD: periodic repetition of the universal DD pulse sequence

The Effective Hamiltonian

The Effective Hamiltonian

Periodic Dynamical Decoupling

PDD Strategy: repeat the basic XfZfZfXfZ cycle with total of *N* pulses. The total duration is fixed at *T*. *N* can be changed. Pulse interval: $\tau = T/N$

Recall noise strength $\eta \equiv ||H_{eff}(T)||T$ norm of final effective system-bath Hamiltonian times the total duration.

Periodic Dynamical Decoupling

PDD Strategy: repeat the basic XfZfZfXfZ cycle with total of *N* pulses. The total duration is fixed at *T*. *N* can be changed. Pulse interval: $\tau = T/N$

Recall noise strength $\eta \equiv ||H_{eff}(T)||T$ norm of final effective system-bath Hamiltonian times the total duration.

PDD leading order result for error:

$$\eta \propto N^{-1}$$

Can we do better?

DD as a Rescaling Transformation

 $J = \|H_{SB}\|_{\infty}$ $\beta = \|H_B\|_{\infty}$

• Interaction terms are rescaled after the DD cycle

 $J = J^{(0)} \mapsto J^{(1)} \propto \max[\tau(J^{(0)})^2, \tau\beta J^{(0)}]$

 $\beta \mapsto \beta + O((J^{(0)})^3 \tau^2)$

• We need a mechanism to continue this

Concatenated Universal Dynamical Decoupling

Nest the universal DD pulse sequence into its own free evolution periods \mathbf{f} :

p(1) = X f Z f X f Z f

Concatenated Universal Dynamical Decoupling

Nest the universal DD pulse sequence into its own free evolution periods **f** :

Concatenated Universal Dynamical Decoupling

Nest the universal DD pulse sequence into its own free evolution periods **f** :

Level	Concatenated DD Series after multiplying Pauli matrices		
1	XfZfXfZf		
2	fZfXfZfYfZfXfZffZfXfZfYfZfXfZf		
3	XfZfXfZfYfZfXfZffZfXfZfYfZfXfZfZfZfZfZfZ		

Length grows exponentially; how about error reduction?

Performance of Concatenated Sequences

error \mapsto (error)² \mapsto ((error)²)² \mapsto (((error)²)²)² \mapsto $\underset{k}{\dots}$ \mapsto (error)^{2k}

Performance of Concatenated Sequences

error \mapsto (error)² \mapsto ((error)²)² \mapsto (((error)²)²)² \mapsto $\underset{k}{\dots}$ \mapsto (error)^{2k}

For fixed total time $T = N\tau$ and N zero-width (ideal) pulses:

$$\eta \propto N^b N^{-c \log N}$$

Compare to periodic DD:

$$\eta \propto N^{-1}$$

C QUANTUM Information Science and Technology

[Khodjasteh & Lidar, PRA 75, 062310 (2007)]

Experiments

Concatenated DD on Adamantene Powder Dieter Suter, TU Dortmund

CDD Results

Concatenated DD for electron spin of ³¹P donors in Si Steve Lyon, Princeton

³¹P donor: Electron spin (S) = $\frac{1}{2}$, Nuclear spin (I) = $\frac{1}{2}$

Periodic DD vs Concatenated DD

Does there exist an optimal pulse sequence?

Optimal = removes maximum decoherence with least possible number of pulses

PRL 98, 100504 (2007)

PHYSICAL REVIEW LETTERS

week ending 9 MARCH 2007

Keeping a Quantum Bit Alive by Optimized π -Pulse Sequences

Götz S. Uhrig*

Lehrstuhl für Theoretische Physik I, Universität Dortmund, Otto-Hahn Straße 4, 44221 Dortmund, Germany (Received 26 September 2006; published 9 March 2007)

A general strategy to maintain the coherence of a quantum bit is proposed. The analytical result is derived rigorously including all memory and backaction effects. It is based on an optimized π -pulse sequence for dynamic decoupling extending the Carr-Purcell-Meiboom-Gill cycle. The optimized sequence is very efficient, in particular, for strong couplings to the environment.

PRL 98, 100504 (2007)

PHYSICAL REVIEW LETTERS

week ending 9 MARCH 2007

Keeping a Quantum Bit Alive by Optimized π -Pulse Sequences

Götz S. Uhrig*

PRL 101, 180403 (2008)

PHYSICAL REVIEW LETTERS

week ending 31 OCTOBER 2008

Universality of Uhrig Dynamical Decoupling for Suppressing Qubit Pure Dephasing and Relaxation OR

Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China (Received 25 July 2008; published 29 October 2008)

The optimal *N*-pulse dynamical decoupling discovered by Uhrig for a spin-boson model [Phys. Rev. Lett. **98**, 100504 (2007)] is proved to be universal in suppressing to $O(T^{N+1})$ the pure dephasing or the longitudinal relaxation of a qubit (or spin 1/2) coupled to a generic bath in a short-time evolution of duration *T*. For suppressing the longitudinal relaxation, a Uhrig π -pulse sequence can be generalized to be a superposition of the ideal Uhrig π -pulse sequence as the core and an arbitrarily shaped pulse sequence satisfying certain symmetry requirements. The generalized Uhrig dynamical decoupling offers the possibility of manipulating the qubit while simultaneously combating the longitudinal relaxation.

PRL 98, 100504 (2007)

PHYSICAL REVIEW LETTERS

week ending 9 MARCH 2007

Keeping a Quantum Bit Alive by Optimized π -Pulse Sequences

Götz S. Uhrig*

PRL 101, 180403 (2008)	PHYSICAL REVIEW	LETTERS	week ending 31 OCTOBER 2008
Universality of Uh	rig Dynamical Decoupling for and Relaxatio	Suppressing Qub	it <mark>Pure Dephasing</mark>
	OR	. . *	
	Wen Yang and Ren-Ba	io Liu [*]	1 1
PRL 102, 120502 (2009)	PHYSICAL REVIEW	LETTERS	27 MARCH 2009
Concatenated	Control Sequences Based on C	Optimized Dynamic	e Decoupling
	Gotz S. Unrig		
School of Phy	sics, University of New South Wales, Ken (Received 30 October 2008; publishe	sington 2052, Sydney NSV ed 27 March 2009)	W, Australia
Two recent devel combined to yield	lopments in quantum control, concatenatian a strategy to suppress unwanted coup	on and optimization of pulings in quantum system	ulse intervals, are as to high order.
Longitudinal relaxat	tion and transverse dephasing can be supp	ressed so that systems with	h a small splitting

Longitudinal relaxation and transverse dephasing can be suppressed so that systems with a small splitting between their energy levels can be kept isolated from their environment. The required number of pulses grows exponentially with the desired order but is only the square root of the number needed if only concatenation is used. An approximate scheme even brings the number down to polynomial growth. The approach is expected to be useful for quantum information and for high-precision nuclear magnetic resonance.

PRL 104, 130501 (2010)

PHYSICAL REVIEW LETTERS

week ending 2 APRIL 2010

Near-Optimal Dynamical Decoupling of a Qubit

Jacob R. West,¹ Bryan H. Fong,¹ and Daniel A. Lidar²

¹HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, California 90265, USA
²Departments of Chemistry, Electrical Engineering, and Physics, Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA (Received 1 September 2009; published 1 April 2010)

We present a near-optimal quantum dynamical decoupling scheme that eliminates general decoherence of a qubit to order *n* using $O(n^2)$ pulses, an exponential decrease in pulses over all previous decoupling methods. Numerical simulations of a qubit coupled to a spin bath demonstrate the superior performance of the new pulse sequences.

PRL 104, 130501 (2010)

PHYSICAL REVIEW LETTERS

week ending 2 APRIL 2010

Near-Optimal Dynamical Decoupling of a Qubit

Jacob R. West,¹ Bryan H. Fong,¹ and Daniel A. Lidar²

¹HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, California 90265, USA
²Departments of Chemistry, Electrical Engineering, and Physics, Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA (Received 1 September 2009; published 1 April 2010)

We present a near-optimal quantum dynamical decoupling scheme that eliminates general decoherence of a qubit to order *n* using $O(n^2)$ pulses, an exponential decrease in pulses over all previous decoupling methods. Numerical simulations of a qubit coupled to a spin bath demonstrate the superior performance of the new pulse sequences.

"Quadratic DD" eliminates the first *n* orders in the Dyson series of the joint system-bath propagator using n^2 pulses

Concatenated DD requires 4ⁿ pulses to do the same, approximately

Inner workings of Quadratic DD

Inner workings of Quadratic DD

- This can be visualized as an outer product of Uhrig sequences:
 - Colors correspond to interval conjugation type (I,X,Y,Z)
 - Areas correspond to interval duration
 - Final pulse sequence is read off row-by-row down the 2D array
- The total normalized time for the sequence is S_n^2 .

For every value of n, the first \sqrt{n} terms in the Dyson series are removed

Comparison of DD Sequences

Summary

- Symmetry as a unifying principle for both passive and active error prevention/correction strategies
- A comprehensive strategy can take advantage of a layered approach:

- symmetry not for free...

- symmetry not for free...

- symmetry not for free...

-pulse errors, Markovian effects

Open Questions

- What is the optimal hybrid strategy?
- Is the fault tolerance threshold better for a hybrid strategy?

see: H.-K. Ng, D.A.L., and J. Preskill, "Combining dynamical decoupling with fault-tolerant quantum computation", arXiv:0911:3202