
Foundations of Quantum Theory

Provide an adequate interpretation

Explore nonclassical phenomenaExplore nonclassical phenomena

Determine principles from which 
quantum theory may be derived



What’s the problem?What’s the problem?



Representational completeness of ψ. The rays of Hilbert space 
correspond one-to-one with the physical states of the system.

Measurement. If the Hermitian operator A with spectral projectors {Pk} is 
measured, the probability of outcome k is 〈ψ|Pk |ψ〉. These probabilities 
are objective -- indeterminism.

“Orthodox” postulates of quantum theory

Evolution of isolated systems. It is unitary,                                    
therefore deterministic and continuous.

Evolution of systems undergoing measurement. If Hermitian operator A
with spectral projectors {Pk} is measured and outcome k is obtained, the 
physical state of the system changes discontinuously,



First problem: the term “measurement” is not defined in terms of 
the more primitive “physical states of systems”. Isn’t a measurement 
just another kind of physical interaction?

Two strategies:

(1) Realist strategy: Eliminate measurement as a primitive concept
and describe everything in terms of physical states

(2) Operational strategy: Eliminate “the physical state of a system” as a 
primitive concept and describe everything in terms of operational 
concepts



“It would seem that the theory is exclusively concerned about 
"results of measurement", and has nothing to say about 
anything else. What exactly qualifies some physical systems to 
play the role of "measurer"? ”

- John Bell

“In a strict sense, quantum theory is a set of rules allowing the 
computation of probabilities for the outcomes of tests which 
follow specified preparations.”

- Asher Peres



The realist strategy



Indeterministic and 
discontinuous evolution

By the collapse postulate
(applied to the system)

By unitary evolution postulate
(applied to isolated system that 

includes the apparatus)

Deterministic and 
continuous evolution

Inconsistencies of the orthodox interpretation

Determinate properties Indeterminate properties



If the measurement apparatus is treated externally

The quantum measurement problem

If the measurement apparatus is treated internally

U is a linear operator





• Interpret coherent superposition as disjunction

False starts on the measurement problem

Means either
or

with probabilities |a|2 and |b|2

This is a denial of the representational completeness of ψ

respectively



• Interpret the reduced density operator as a proper mixture

Either contradicts original assignment of entangled state
Or is a denial of the representational completeness of 

False starts on the measurement problem

Or is a denial of the representational completeness of ψ



• Appeal to environment-induced decoherence

False starts on the measurement problem

This doesn’t help



• Appeal to differences in the state of the apparatus

But for the interaction to be considered a measurement, we require

False starts on the measurement problem

But for the interaction to be considered a measurement, we require

And by linearity

The postulated evolution does not correspond to a proper measurement



Responses to the measurement problem

2. Deny representational completeness of ψ

1. Deny universality of quantum dynamics

• Quantum-classical hybrid models
• Collapse models 

• ψ-ontic hidden variable models (e.g. Bohmian mechanics) 
• ψ-epistemic hidden variable models• ψ-epistemic hidden variable models

3. Deny that there is a unique outcome

• Everett’s relative state interpretation (many worlds)

4. Deny some aspect of classical logic or classical probability theory
• Quantum logic and quantum Bayesianism

5. Deny some other feature of the realist framework?



The operational strategy





Operational Quantum Mechanics

Preparation Measurement 

Vector Hermitian operator



Operational Quantum Mechanics

Preparation Measurement 

Effective preparation 

Update map



Operational Quantum Mechanics

Preparation Transformation Measurement 

Vector Unitary map Hermitian operator



Operational Quantum Mechanics

Preparation Transformation Measurement 

Effective preparation 



Operational Quantum Mechanics

Transformation Measurement Preparation 

Effective Measurement



The real formalism of operational 
quantum theoryquantum theory



Preparation Measurement 

Operational Quantum Mechanics

Density operator
Position operator valued 

measure (POVM)



Operational Quantum Mechanics

Preparation Measurement 

Effective preparation 

Update map
Trace-decreasing 
completely positive

linear map
where



Operational Quantum Mechanics

Preparation Transformation Measurement 

Trace-preserving 
completely positive

linear map (CP map)
Positive operator-valued
measure (POVM)Density operator



Operational Quantum Mechanics

Preparation Transformation Measurement 

Effective preparation 

ρ ! ρ′ = T (ρ)



Operational Quantum Mechanics

Transformation Measurement Preparation 

Effective Measurement



Every preparation P is associated with a density operator ρ

Every measurement M is associated with a positive operator-valued 
measure {Ek}.  The probability of M yielding outcome k given a 
preparation P is

Operational postulates of quantum theory

Every measurement outcome k is associated with a trace-
nonincreasing completely-positive linear map Tk such that

Every transformation is associated with a trace-preserving completely-
positive linear map

No mention of “physical states” or their evolution

ρ ! ρ′ = T (ρ)



How density operators and POVMs 
arise in the operational approacharise in the operational approach



Operational Quantum Mechanics

Preparation Measurement 

Vector Hermitian operator



Preparation Measurement 

Operational Quantum Mechanics

Density operator Hermitian operator



jψ1i

Ensembles

f pig

jψ2i

jψ3i

fΠkgρ

Positive

Unit trace

“Density operator”

p(k) = T r( ¦ kρ)p(k) =
∑

i

p(k|i)p( i)

=
∑

i

〈ψi|¦ k|ψi〉pi

=
∑

i

T r( ¦ k|ψi〉〈ψi|)pi

= T r( ¦ k
∑

i

pi|ψi〉〈ψi|)
hψjρjψi ¸ 0 8jψi 2 H

Tr(ρ) = 1

jψ3i

ρ =
∑

i

pi|ψi〉〈ψi|where



Reduced density operators

jψi sa
f Π(s)k g

s

a f Iag
ρs

p(k) = T rsa[( ¦ ( s)
k ⊗ Ia) |ψ〉sa〈ψ|]

= T rs[¦
( s)
k ( T ra( |ψ〉sa〈ψ|) ]

p(k) = T r( ¦ ( s)
k ρs)

where ρs = T ra( |ψ〉sa〈ψ|)



↔ Pure preparation
↔ Mixed preparation



Multiplicity of convex decompositions

Multiplicity of purifications



Preparation Measurement 

Operational Quantum Mechanics

Density operator Hermitian operator



Preparation Measurement 

Operational Quantum Mechanics

Density operator
Projection valued 
measure (PVM)



Preparation Measurement 

Operational Quantum Mechanics

Density operator
Position operator valued 

measure (POVM)





f pig

fΠ(1)j g

fΠ(2)j g

(3)

ρ

k = (i, j)
Mixtures of 

measurements

fΠ(3)j g
p( i, j) = p( j|i)p( i)

= T r( ¦ ( i)
j ρ)pi

= T r(pi¦
( i)
j ρ)

Ei,j

Positive hψjEk jψi ¸ 0 8jψi 2 H

Sum to identity
∑

k Ek = I

p(k) = T r(Ekρ)

“Positive operator valued measure (POVM)”{Ek}
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Recall



j 2 f 1, 2, 3, 4, 5, 6, 7, 8, 9, ...g

k 2 f 1, 2, 3, ...g {Ek}

{Fj}

Coarse-graining

p(k) =
∑

j∈Sk
p( j)

T r(Ekρ) =
∑

j∈Sk
T r(Fjρ) ∀ρ

= T r[(
∑
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Fj)ρ] ∀ρ

Ek =
∑

j∈Sk
Fj Note: the Ek need not be rank 1
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Note: General conditions for joint measurability of POVMs are not known



ρs

fΠ(sa)k g

Measurement by coupling to an ancilla

p(k) = T rsa[¦
( sa)
k (ρs ⊗ τa) ]

= T rs[T ra( ¦ ( sa)
k τa) ρs]

E
(s)
k



ρs

E
(s)
= Tr (Π

(sa)
τ )

Example

= {
√

2−1( |0〉|0〉 + |1〉|1〉) ,√
2−1( |0〉|0〉 − 1〉|1〉) ,√
2−1( |0〉|1〉 + |1〉|0〉) ,√
2−1( |0〉|1〉 − |1〉|0〉)}

f jΦ1i , jΦ2i , jΦ3i , jΦ4i g

E
(s)
k = Tra(Π

(sa)
k τa)

= hθjajΦk i sahΦkjsajθi a
hθjajΦ1(2)i sa =

p
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[cos(θ/2)j0i s § sin(θ/2)j1i s] =
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j § θi s
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p
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−1
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p
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jπ ¨ θi s

θ = π/4

Naimark’s theorem: Every POVM can be implemented by coupling to an 
ancilla and implementing a projective measurement
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jπ + θi hπ + θjg



Preparation Measurement 

Operational Quantum Mechanics

Density operator
Position operator valued 

measure (POVM)



Towards an operational 
axiomatization of axiomatization of 
quantum theory



Convex theories

Quantum theory

Category Theory 
Framework

Classical theory

Convex theories
with maximal dual cone

C*  algebraic theories
Possibilistic Theories

Classical Statistical Theories 
with epistemic restriction



Preparation Measurement 

A framework for convex operational theories

sP =






Pr( 1|M,P )
Pr( 2|M,P )
Pr( 1|M ′, P )
Pr( 2|M ′, P )
Pr( 3|M ′, P )

...






rM,k =






0
0
0
1
0
...








Preparation Measurement 

A framework for convex operational theories

sP =






Pr( pass|M1, P )
Pr( pass|M2, P )

...
Pr( pass|MK, P )






Suppose there are K fiducial measurements (pass-fail mmts from 
which one can infer the statistics for all mmts)

What can we say about f?

“operational state”



Operational states form a convex set

(w,1-w)

Convex linear

Also true for fiducial mmts, so

Closed under convex combination



Convex linearity implies linearity

If f is convex linear on opt’l states

Then f is linear on opt’l states

Proof:Proof:

Note that:

Thus:



Convex linearity implies linearity

If f is convex linear on opt’l states

Then f is linear on opt’l states

Therefore



Preparation Measurement 

A convex operational theory

sP ∈ S
“operational effects”“operational states”

S = Convex set R = Interval of 
positive cone

S and R characterize the operational theory!



Operational classical theory

S = a simplex

R = the unit hypercube

s can be any probability distributions

r can be any vector of conditional probabilities 

R = the unit hypercube



Operational quantum theory

Recall: The Hermitian operators on H of dimension d form 
a real Euclidean vector space of dimension d2

S = the convex set of positive trace-one operators   

The inner product is (A,B) = Tr(AB)

S = the convex set of positive trace-one operators   

R = the set of all positive operators less than identity

hψjEk jψi ¸ 0 8jψi 2 H∑
k Ek = I

An axiomatization must derive S and R

See e.g. L. Hardy, quant-ph/0101012, and J. Barrett, quant-ph/0508211



Is the operational interpretation satisfactory?Is the operational interpretation satisfactory?
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θ = π/4

Naimark’s theorem: Every POVM can be implemented by coupling to an 
ancilla and implementing a projective measurement



P2

P4

P6P5

P1

M1

M3

M10
P7

M2

M6

M4

Two approaches to axiomatization

Operational approach Ontological approach

M8
P8 M9

Preparations Measurements 

Axioms are constraints on 
experimental statistics p(k|M,P)

Axioms are constraints on the 
ontology and its dynamics


