Explore nonclassical phenomena

Determine principles from which
guantum theory may be derived




What's the problem?



“Orthodox” postulates of quantum theory

Representational completeness of Y. The rays of Hilbert space
correspond one-to-one with the physical states of the system.

Measurement. If the Hermitian operator A with spectral projectors {P,} is
measured, the probability of outcome k is (Y|P, |W). These probabilities

are objective -- indeterminism.

) — Ulp) = e 77y

Evolution of isolated systems. It is unitary,
therefore deterministic and continuous.

Evolution of systems undergoing measurement. If Hermitian operator A
with spectral projectors {P,} is measured and outcome K is obtained, the
physical state of the system changes discontinuously,
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First problem: the term “measurement” is not defined in terms of
the more primitive “physical states of systems”. Isn’t a measurement
just another kind of physical interaction?

Two strategies:

(1) Realist strategy: Eliminate measurement as a primitive concept
and describe everything in terms of physical states

(2) Operational strategy: Eliminate “the physical state of a system” as a
primitive concept and describe everything in terms of operational
concepts



“It would seem that the theory is exclusively concerned about
"results of measurement”, and has nothing to say about
anything else. What exactly qualifies some physical systems to
play the role of "measurer"?”

- John Bell

“In a strict sense, quantum theory is a set of rules allowing the
computation of probabilities for the outcomes of tests which
follow specified preparations.”

- Asher Peres



The realist strategy



Inconsistencies of the orthodox interpretation

By unitary evolution postulate

By the collapse postulate (applied to isolated system that
(applied to the system) includes the apparatus)
Indeterministic and Deterministic and
discontinuous evolution continuous evolution

Determinate properties Indeterminate properties



The quantum measurement problem
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If the measurement apparatus is treated externally
al 1Y +0bl |) —|7T) with probability |a|?
— | |) with probability [b|2

If the measurement apparatus is treated internally
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False starts on the measurement problem

* Interpret coherent superposition as disjunction

a‘ T> ® uup”> _I_ b‘ \L) ® udownn>
Means either | T) ® | “up”)
0|’ ‘ l) ® “dOWn”>
with probabilities |a|? and |b|?
respectively

This is a denial of the representational completeness of



False starts on the measurement problem

e Interpret the reduced density operator as a proper mixture

“‘up”) + bl 1) ®
“up” Y “up” | + |b|?| “down” ) { “down” |

al T) ®
p=al?
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Either contradicts original assignment of entangled state
Or is a denial of the representational completeness of



False starts on the measurement problem

» Appeal to environment-induced decoherence

(a| T) 40l 1)) ® | “ready”) ® |Ep)
— (a| T) @ ["up™) + b |) ® | "down”)) ® | Ep)

“up”) ® |E1) +0b| |) ®|"down”) ® |Ep)

—al1)®
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This doesn’t help



False starts on the measurement problem

» Appeal to differences in the state of the apparatus

(al T) +0] 1)) ®["ready(1)") — | T) ®
(al T) + 0 1)) ®|["ready(2)") — | ]) ® ["down™)

up”y

But for the interaction to be considered a measurement, we require

| T) ®@[*"ready(1)") — [ 1) ®|“up”)
1) ® |“ready(1)") — | |) ® |"“down")
And by linearity
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The postulated evolution does not correspond to a proper measurement



Responses to the measurement problem

1. Deny universality of quantum dynamics

* Quantum-classical hybrid models
 Collapse models

2. Deny representational completeness of v

* ¢p-ontic hidden variable models (e.g. Bohmian mechanics)
* ¢)-epistemic hidden variable models

3. Deny that there is a unique outcome

» Everett’s relative state interpretation (many worlds)

4. Deny some aspect of classical logic or classical probability theory
e Quantum logic and quantum Bayesianism

5. Deny some other feature of the realist framework?



The operational strategy






Operational Quantum Mechanics

B

Preparation
F)

Vector

|)

R

Measurement
M

Hermitian operator
A

A= rarpPy

Pr(k|P, M) = (4| Pg|)




Operational Quantum Mechanics

B =

Preparation Measurement
L M)

Effective preparation
P

Update map
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Operational Quantum Mechanics

2 W B

Preparation Transformation Measurement
P T M
Vector Unitary map Hermitian operator
A
%) U
A =Yg apPy

Pr(k|P, T,M) = (p|UTP,U|)




Operational Quantum Mechanics
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Preparation Transformation Measurement
\ P T } M
Effective preparation
P/
) — ') = Uly)

Pr(k|P',M) = (/| Pg|[¢") = (|UTPLUp)




Operational Quantum Mechanics

B

Preparation
P

n B

Transformation Measurement
_— M)
Effective Measurement
M/
A A =UTAU
Al =Y apP]

Pr(k|P, M) = (| Pl|yp) = (p|UTPLU|p)




The real formalism of operational
guantum theory



Operational Quantum Mechanics

:

Preparation Measurement
P M
_ Position operator valued
Density operator measure (POVM)

P {Er}

Pr(k|P,M) = Tr(pE})




Operational Quantum Mechanics

T A
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Preparation Measurement
" M)

Effective preparation

P
Update map
T.(p) Trace-decreasing
P — Pl = Tr[7.(p)] completely positive

" linear map
where 7,/ (1) = Ej T,



Operational Quantum Mechanics
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Preparation Transformation Measurement
P T M

Trace-preserving
_ completely positive Positive operator-valued
Density operator linear map (CP map) measure (POVM)

P T {EL}

Pr(k|P, T,M) = Tr[ELT (p)]




Operational Quantum Mechanics
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Preparation Transformation Measurement
\ P T } M
Effective preparation
P/
/
pt p =T(p)

Pr(k|P',M) = Tr(Egp") = Tr(ExT (p))




Operational Quantum Mechanics

'

Preparation
P

o &

Transformation Measurement
_— M)
Effective Measurement
M/

E, — E, = T1(E})

Pr(k|P!,M) = Tr(Elp) = Tr(TT(Ey)p)




Operational postulates of quantum theory

Every preparation P is associated with a density operator p

Every measurement M is associated with a positive operator-valued
measure {E,}. The probability of M yielding outcome k given a

preparation P is Pr(k|P,M) = Tr(pE})

Every transformation is associated with a trace-preserving completely-
positive linear map P ! ,0/ — T (,0)

Every measurement outcome Kk is associated with a trace-
nonincreasing completely-positive linear map T, such that

71
P Pk — Tr[’%ff&)]

No mention of “physical states” or their evolution




How density operators and POVMs
arise in the operational approach



Operational Quantum Mechanics
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Preparation
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Measurement
M

Hermitian operator
A

A= pagly

Pr(k|P, M) = (| Mg[e)




Operational Quantum Mechanics

: m

Preparation Measurement
P M
Density operator Hermitian operator
A
P A= papMNyg

Pr(k|P,M) = Tr(pl)




Ensembles

p f11xQ
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p(k) = > p(kli)p(4)
= Z(%‘H ki) pi

= ZTF(I k|0i) (Vi) pi
= Tr(| kzpz‘|¢z’><¢i|)

p(k) = Tr(i gp)
where  p= > pilti) (i
“Densit; operator”
Positive Mjpjl . 0 8jyi 2 H
Unittrace Tr(p) =1



Reduced density operators

p(k) = Trsal(} $9 @ Ia) 1) sa(®]]
= Tr! S)<Tra<|w>sa<w|)]

p(k) = Tr(l (D pg)
where Pg — Tra(|¢>sa<¢|)



p = |¢Y)(xp| < Pure preparation
o = > pilw;){(;] < Mixed preparation



Multiplicity of convex decompositions

1 1 1
ST = 210) (0] + 1) (1]
1 1 | | Il_ -
ST = S (H+ 510 (-
Multiplicity of purifications
L = 10y 10y + (1) 1))
51 = Bﬁ|>|> 1) (1)

1 1
51 — TrB[E(|OH+>‘|‘|1H—>)]



Operational Quantum Mechanics

: m

Preparation Measurement
P M
Density operator Hermitian operator
A
P A= papMNyg

Pr(k|P,M) = Tr(pl)




Operational Quantum Mechanics

»

Preparation Measurement
P M

Projection valued
measure (PVM)

P {Mg}

Density operator

Pr(k|P,M) = Tr(pl)




Operational Quantum Mechanics

:

Preparation Measurement
P M
_ Position operator valued
Density operator measure (POVM)

P {Er}

Pr(k|P,M) = Tr(pE})




Standard
Measurements

Generalized
Measurements




Mixtures of —
measurements | k= (i,]) /7\
R o

® ij q
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NN ) o,
p(i,5) = p(jl)p(3) I

Tr(' D)o,
r( 7 l?)pz o(k) = Tr(Ep)

— | (.Z)
Tr(\_‘p“,_;J 2 Positive h|Exjyl , 0 8jyi 2 H
L Sumto identity ), Ep =1

{Ek} “Positive operator valued measure (POVM)”



fjoi hoj, jlihljg
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Recall
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Coarse-graining
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p(k) = > p(J)
JESK
Tr(Egp) = > Tr(F;p) Vp
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Tri( > Fj)pl Vp
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Ep = F
& jg J Note: the E, need not be rank 1
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Example k= (4, §)
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Another
example
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Note: General conditions for joint measurability of POVMs are not known



Measurement by coupling to an ancilla

fH;(;a)g




Example ‘
-

0) = cos(0/2)]0) + sin(6/2)[1) —{) [ A fj(I)ll j(I)QI ](I)3| ](I)4|g
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1 |
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Naimark’s theorem: Every POVM can be implemented by coupling to an
ancilla and implementing a projective measurement



Operational Quantum Mechanics

:

Preparation Measurement
P M
_ Position operator valued
Density operator measure (POVM)

P {Er}

Pr(k|P,M) = Tr(pE})




Towards an operational
axiomatization of
guantum theory
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A framework for convex operational theories

~C—

A
& ) (D@
Preparation Measurement
P M
[ Pr(1|M,P) (0 )
Pr(2|M, P) 0
_ | Pr(1|M', P) S
“PT | Pr(2|M, P) ’ 1
Pr(3|M’, P) 0
\ = ) \ )

Pr(k|P,M) =ry - Sp



A framework for convex operational theories

-
1 T2
©
Preparation Measurement
P M

Suppose there are K fiducial measurements (pass-fail mmts from
which one can infer the statistics for all mmts)

/ PI‘(pass|M1, P) \
Pr(pass| M2, P) “operational state”

\ Pr(pass| Mg, P) /

Pr(k|P,M) = far(Sp)  What can we say about f?



Operational states form a convex set

VM, k : p(k|M,P") = w p(k|M, P)+(1—w) p(k|M, P")
F(spn) = w f(sp) + (1 —w) f(Sp1)

Also true for fiducial mmts, so  Spr = w Sp + (1 — w) Spr
Closed under convex combination

flwsp+(1-w) sp) =w f(sp)+(1—w) f(Spr) Convex linear



Convex linearity implies linearity
If f is convex linear on opt’l states
s=>,wss; = f(s)=2;wif(s;))  O0<w;<1and Y,w =1
Then f is linear on opt’l states
s=>.a;8 = f(s)=>;a;f(s;) a; ERand Y, a;, =1

Proof: 8 = 2., yS;
s+ Djer_loylsy = Yier, loils;

Notethat: 1 =>,«;
L+ Yjer logl = Yiery lagl = N

o]

Thus: j%-s + Xjer. [Sj = Xiely S
LF8) 4 Yyer S = Sier, Silr(si)
F(s) = Tiaif (s:)



Convex linearity implies linearity

If f is convex linear on opt’l states

s=23,wis; = f(s) =2;wif(s;))  O0<w;<1landy,w=1
Then f is linear on opt’l states

s=2, a8 = f(s)=2;a;f(si) a; €ER and Y, =1

Therefore dr: f(S) =r-s



A convex operational theory

:

Preparation Measurement
P M
speS Far ke € R
“operational states” “operational effects”
S = Convex set R = Interval of

positive cone

S and R characterize the operational theory!

Pr(k|P,M) =ry} - Sp




Operational classical theory

S can be any probability distributions

S = a simplex

I' can be any vector of conditional probabilities

R = the unit hypercube



Operational quantum theory

Recall: The Hermitian operators on H of dimension d form
a real Euclidean vector space of dimension d? z

The inner productis (4, B) = Tr(AB)

w\
Pr(k|P,M) = (p, E},) = Tr(pE}) R '
S = the convex set of positive trace-one operators =

Pr(k|P,M) >0 forall P - hjELjvi , 0 8yi 2 H
. Pr(k|P,M) =1 - Y Epy=1

R = the set of all positive operators less than identity

An axiomatization must derive S and R

See e.g. L. Hardy, quant-ph/0101012, and J. Barrett, quant-ph/0508211



|s the operational interpretation satisfactory?



RS . 1. . . 1. . .
f%]@lhﬂ, %ji Oihy 0], §j7ri Oihri 0), §J7r—|—9lh7r—|—ng
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Naimark’s theorem: Every POVM can be implemented by coupling to an
ancilla and implementing a projective measurement



Two approaches to axiomatization

Operational approach

Preparations Measurements

Axioms are constraints on
experimental statistics p(k|M,P)

Ontological approach

h - ...;E‘.—,}
0, 2
Eumnl !’%féﬁtm;%%’ég

Axioms are constraints on the
ontology and its dynamics



