
The traditional notion of 
noncontextuality 

in quantum theory



A given vector may appear in many different measurements
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The traditional notion of noncontextuality:
Every vector is associated with the same 
regardless of how it is measured (i.e. the context)

Traditional notion of noncontextuality
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The traditional notion of noncontextuality:
For every λ, every basis of vectors receives a 0-1 valuation, 
wherein exactly one element is assigned the value 1 
(corresponding to the outcome that would occur for λ), and 
every vector is assigned the same value regardless of the 
basis it is considered a part (i.e. the context).
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The traditional notion of noncontextuality:
For every λ, every basis of vectors receives a 0-1 valuation, 
wherein exactly one element is assigned the value 1 
(corresponding to the outcome that would occur for λ), and 
every vector is assigned the same value regardless of the 
basis it is considered a part (i.e. the context).



Ernst Specker (with son) and 
Simon Kochen

Bell-Kochen-Specker theorem: A noncontextual hidden variable 
model of quantum theory for Hilbert spaces of dimension 3 or 
greater is impossible. 

John S. Bell



Example: The CEGA algebraic 18 ray proof in 4d:
Cabello, Estebaranz, Garcia-Alcaine, Phys. Lett. A 212, 183 (1996)

0,0,0,1
0,0,1,0
1,1,0,0
1,-1,0,0

0,0,0,1
0,1,0,0
1,0,1,0
1,0,-1,0

1,-1,1,-1
1,-1,-1,1
1,1,0,0
0,0,1,1

1,-1,1,-1
1,1,1,1
1,0,-1,0
0,1,0,-1

0,0,1,0
0,1,0,0
1,0,0,1
1,0,0,-1

1,-1,-1,1
1,1,1,1
1,0,0,-1
0,1,-1,0

1,1,-1,1
1,1,1,-1
1,-1,0,0
0,0,1,1

1,1,-1,1
-1,1,1,1
1,0,1,0
0,1,0,-1

1,1,1,-1
-1,1,1,1
1,0,0,1
0,1,-1,0

In each of the 9 columns, one ray is assigned 1, the other three 0
Therefore, 9 rays must be assigned 1 

But each ray appears twice and so there must be an even number
of rays assigned 1

CONTRADICTION!

Each of the 18 rays appears twice in the following list
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Example: Kochen and Specker’s original algebraic 117 ray proof in 3d



Example: Clifton’s state-specific 8 ray proof in 3d

CONTRADICTION!



The traditional notion of noncontextuality:
For every λ, every projector  P is assigned a value 0 or 1 
regardless of how it is measured (i.e. the context)

Coarse-graining of a measurement implies a coarse-
graining of the value (because it is just post-processing) 

Every measurment has some outcome

for all P



Example: Bell’s proof in 3d based on Gleason’s theorem

CONTRADICTION

But there is no ρ such that ω(P)=0 or 1 for all P
(Any given ρ can only achieve a 0-1 valuation on a single basis)



the value assigned to A should be independent of whether it is 
measured together with B or together with C (i.e. the context)

The traditional notion of noncontextuality:

Measure A = measure projectors onto eigenspaces of A,

Measure A with B 
= measure projectors onto joint eigenspaces of A and B, 
then coarse-grain over B outcome

is independent of context

is independent of contextTherefore

For Hermitian operators A, B, C satisfying

Measure A with C 
= measure projectors onto joint eigenspaces of A and C, 
Then coarse-grain over C outcome



Functional relationships among commuting Hermitian operators 
must be respected by their values

Proof: the possible sets of eigenvalues one can simultaneously 
assign to L, M, N,… are specified by their joint eigenstates. By 
acting the first equation on each of the joint eigenstates, we get the 
second.

If

then



Example: Mermin’s magic square proof in 4d

I

I

I

I I ¡ I

v(X1) v(X2) v(X1X2) = 1

v(Y1) v(Y2) v(Y1Y2) = 1

v(X1Y2) v(Y1X2) v(Z1Z2) = 1

v(X1) v(Y2) v(X1Y2) = 1

v(Y1) v(X2) v(Y1X2) = 1

v(X1X2) v(Y1Y2) v(Z1Z2) = −1

X1 X2

Y2 Y1

X1X2

Y1Y2

Z1Z2X1Y2 Y1X2

Product of LHSs = +1
Product of RHSs = -1

CONTRADICTION

X1 X2 X1X2 = I

Y1 Y2 Y1Y2 = I

X1Y2 Y1X2 Z1Z2 = I

X1 Y2 X1Y2 = I

Y1 X2 Y1X2 = I

X1X2 Y1Y2 Z1Z2 = −I



Aside: Local determinism is an instance of traditional 
noncontextuality where the context is remote

is either measured withSAa - IB IA - SBb
IA - SBb′or with

v(SAa )Therefore                 is the same for the two contexts

the value assigned to A should be independent of whether it is 
measured together with B or together with C (i.e. the context)

Recall traditional noncontextuality:

For Hermitian operators A, B, C satisfying

Every proof of the impossibility of a locally deterministic model is 
a proof of the impossibility of a traditional noncontextual model

This is local determinism



jψiAB =
1

2

4∑

i=1

jiiAjiiB

Aside: Traditional noncontextuality can sometimes be 
justified by local causality

Perfect correlation when same mmt is made on both wings
+ local causality
� Traditional noncontextual hidden variable model for mmts on 
one wing

CONTRADICTION!



The generalized notion 
of noncontextuality



Problems with the traditional definition of noncontextuality:
- applies only to sharp measurements
- applies only to deterministic hidden variable models
- applies only to models of quantum theory

A better notion of noncontextuality would determine
- whether any given theory admits a noncontextual model
- whether any given experimental data can be explained by 

a noncontextual model



Preparation 
P

A realist model of an operational theory

Measurement
M



A realist model of an operational theory is noncontextual if

Operational equivalence 
of two experimental 

procedures

Equivalent 
representations 

in the realist model

Generalized definition of noncontextuality:
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Example from quantum theory

Different density op’s
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model



P2

P4 P3

P6P5

P1

M1

M5

M3

M10M8

P9
P8

P7

M2

M6

M4

M7

M9

Preparation contextual 
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Definition of preparation 
noncontextual model:



λ

λ

λ

λ

λ

(a) Some states of a qubit

(c) A preparation contextual model 
of these
(Kochen-Specker, 1967)

(a) (b) (c)

(b) A preparation noncontextual
model of these

(RWS, PRA 75, 032110, 2007)
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π

4
i h
π
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universal noncontextuality
= noncontextuality for preparations and measurements



Generalized noncontextuality 
in quantum theory



Defining noncontextuality in quantum theory

P

P’

Preparation Noncontextuality in QT



Defining noncontextuality in quantum theory

M

M’

Measurement Noncontextuality in QT



Preparation-based proof 
of contextuality

(i.e. of the impossibility of a noncontextual 
realist model of quantum theory)



Important features of realist models

Representing one-shot distinguishability:

Representing convex combination:



Proof based on finite construction in 2d



Proof based on finite construction in 2d

σa

σb

σA

σc

σC
σB





By preparation noncontextuality





CONTRADICTION

But then the RHS of decomposition (4) is

From decompositions (1)-(3)



Example: A “reverse” Gleason theorem for all dimensions



for some effect Ελ

Suppose preparation noncontextuality

CONTRADICTION

If one knew λ, one could retrodict with certainty which state 
was prepared from an orthogonal basis, for any basis.
There is no effect such that finding it would allow one to 
achieve such a retrodiction.

is convex-linear in ρ



By preparation noncontextuality

But PNC for σx cannot 
be justified by local 
causality

PNC for I/2 can be 
justified by local 
causality

Aside: justifying preparation noncontextuality by local causality



Any bipartite Bell-type 
proof of nonlocality

proof of preparation 
contextuality→

(proof due to Jon Barrett)

Also,



Measurement contextuality

New definition versus traditional definition
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How to formulate the traditional notion of noncontextuality:



This is equivalent to assuming:
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M

M’

coarse-grain
|ψ2〉 and |ψ3〉

measure

coarse-grain
|ψ’2〉 and |ψ’3〉

measure



traditional notion of 
noncontextuality =

M

But recall that the most general representation was

Therefore:

outcome determinism for 
sharp measurements

revised notion of 
noncontextuality for sharp 

measurements

and



So, the new definition of noncontextuality is not simply a 
generalization of the traditional notion

For sharp measurements, it is a revision of the 
traditional notion



Local determinism:
We ask: Does the outcome depend on space-like separated events 

(in addition to local settings and λ)?

Local causality:
We ask: Does the probability of the outcome depend on space-like 

separated events (in addition to local settings and λ)?

Traditional notion of measurement noncontextuality:
We ask: Does the outcome depend on the measurement context 

(in addition to the observable and λ)?

The revised notion of measurement noncontextuality:
We ask: Does the probability of the outcome depend on the 
measurement context (in addition to the observable and λ)?

Noncontextuality and determinism are separate issues



No-go theorems for previous notion are not necessarily 
no-go theorems for the new notion!

In face of contradiction, could give up ODSM

traditional notion of 
noncontextuality

=

outcome determinism for 
sharp measurements

revised notion of 
noncontextuality for sharp 

measurements

and



preparation 
noncontextuality

outcome determinism for 
sharp measurements

However, one can prove that

|ψ1〉

|ψ3〉

|ψ2〉

Proof



preparation 
noncontextuality

outcome determinism for 
sharp measurements

preparation 
noncontextuality

measurement 
noncontextuality

and

Therefore:

outcome determinism for 
sharp measurements

measurement 
noncontextuality

and

We’ve established that



preparation 
noncontextuality

outcome determinism for 
sharp measurements

preparation 
noncontextuality

measurement 
noncontextuality

and

Therefore:

Traditional notion of 
noncontextuality

… and there are many new proofs

no-go theorems for the traditional notion of noncontextuality can 
be salvaged as no-go theorems for the generalized notion

We’ve established that



Measurement-based proof 
of contextuality

(i.e. of the impossibility of a noncontextual 
realist model of quantum theory)



Proof of contextuality for unsharp 
measurements in 2d

By definition

By outcome determinism for 
sharp measurements



By the assumption of measurement noncontextuality

CONTRADICTION



Example: A variant of Busch’s generalization of Gleason to 2d
Busch, Phys. Rev. Lett. 91, 120403 (2003)



CONTRADICTION

But there is no ρ such that Tr(ρ P)=0 or 1 for all P
(Any given ρ can only achieve a 0-1 valuation on a single basis)

By outcome determinism for sharp measurements
ξP (λ) = 0 or 1   for all projectors P

Measurement noncontextuality

is convex linear in E

for some density operator ρλ

ξE(λ) considered as a function of E satisfies the conditions of 
the generalized Gleason’s theorem



The mystery of contextuality

There is a tension between

1) the dependence of representation on certain details of 
the experimental procedure

and 

2) the independence of outcome statistics on those details 
of the experimental procedure



Noncontextuality and the 
characterization of classicality



From: 
qis.ucalgary.ca/quantech/wiggalery.html

Continuous Wigner function
for a harmonic oscillator

Common slogan:
A quantum state is nonclassical if it has 
a negative Wigner representation

Negativity is not necessary for 
nonclassicality: the nonclassicality could 
reveal itself in the negativity of the 
representation of the measurement rather 
than the state

Negativity is not sufficient for nonclassicality:
When considering possibilities for a classical 
explanation, we need to look at 
representations other than that of Wigner

Classicality as non-negativity

Better to ask whether a quantum experiment
admits of a classical explanation



Examples:
• Wigner representation 
• discrete Wigner representation 
• Q representation of quantum optics
• P representation of quantum optics
• Hardy-type formulation of QM using fiducial measurements
• Hardy-type formulation of QM using fiducial preparations
• …

Quasi-probability representations of QM:

(e.g. Wootters, quant-ph/0306135)

States Measurements

See Ferrie and Emerson, J. Phys. A 41 352001 (2008) 



This provides a classical explanation if and only if

for all ρ for all {Ek} 

A quantum experiment is nonclassical if it fails to admit a 
quasi-probability representation that is nonnegative for all 
states and measurements 

Classicality from nonnegativity, take II:

Quasi-probability representations of QM:
States Measurements



Quasi-probability representations of QM:

Nonnegative quasi-probability 
representation of QM

Noncontextual ontological model 
of QM

=

Equivalent notions of classicality

This provides a classical explanation if and only if

for all ρ for all {Ek} 

States Measurements



Noncontextuality inequalities and 
applications of contextuality



Based on noncontextuality-inequality violation

Parity-oblivious multiplexing
RS, Buzacott, Keehn, Toner, Pryde, PRL 102, 010401 (2009)

Quantum Spellcraft

Secure key distribution?
Horodecki4, Pawlowski, Bourennane, arXiv:1002.2410

Computational advantages? 
Raussendorf, arXiv:0907.5449

Anders and Browne, Phys. Rev. Lett. 102, 050502 (2009) 



Why isn’t the world more contextual?



The game of parity-oblivious multiplexing

b=xy

Alice and Bob win if

x0, x1
y b

Victor

Alice Bob

The catch: no information about parity (x0 ⊕ x1) can be conveyed!



Theorem: For all theories admitting a preparation noncontextual model

p(b=xy) ≤ 3/4
A “noncontextuality inequality”

RWS, Buzacott, Keehn, Toner, Pryde, PRL 102, 010402 (2009)


