

Quantum Annealing and Quantum Phase Transition

Mohammad Amin D-Wave Systems Inc.

Annealing as a Way of Optimization

Ising Problem:

Classical (Thermal) Annealing

Consider a physical system with energy:

Thermal fluctuations take the system out of the local minima

Classical (Thermal) Annealing

Consider a physical system with energy:

$$H = E\left(\sum_{i=1}^{N} h_i s_i + \sum_{i,j=1}^{N} J_{ij} s_i s_j\right)$$

Boltzmann distribution: $P_n = Z^{-1}e^{-E_n/T}$ **Partition function:** $Z = \operatorname{Tr} e^{-H/T} = \sum e^{-E_n/T}$

Thermal annealing: change T slowly from T_{max} to 0

Or: keep T constant and change E from 0 to E_{max}

Quantum Annealing

Quantum fluctuations (tunneling) keep the system out of the local minima

Quantum Annealing

$$H_{P} = \sum_{i=1}^{N} h_{i} \sigma_{i}^{z} + \sum_{i,j=1}^{N} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z}$$

Hamiltonian: $H = E \left(H_{P} - \Gamma(t) \sum_{i=1}^{N} \sigma_{i}^{x} \right)$ $\Gamma(t) = \frac{\Delta(t)}{2E}$

Quantum annealing: change Γ slowly from Γ_{max} to 0

Phase Transitions

During annealing the system may go through a phase transition

Phase transition: Transformation of a thermodynamic system from one phase to another due to some external change (e.g., temperature, pressure, etc.)

Classical Phase Transition

Ferromagnetically coupled spins $H = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z$ Large T: $\uparrow \downarrow \downarrow \uparrow$ $\downarrow \uparrow \downarrow \downarrow$ m **Magnetization:** ferromagnet paramagnet $m = \left\langle \sum_{i=1}^{N} \sigma_{i}^{z} \right\rangle$ T $\overline{T_c}$

Thermal Equilibrium

P_i = Probability of finding the system in state *i* with energy E_i

Boltzmann distribution:

$$P_i = \frac{e^{-E_i/k_BT}}{Z}$$

Partition function:

$$Z = \sum_{i} e^{-E_i/k_B T}$$

Let us write

$$Z = \sum_{i} e^{-E_{i}/k_{B}T} = e^{-F/k_{B}T}$$
$$\implies F = -k_{B}T \ln Z \qquad \text{Free energy}$$

Let us write

$$Z = \sum_{i} e^{-E_i/k_B T} = e^{-F/k_B T}$$

$$P_i = \frac{e^{-E_i/k_B T}}{Z} \quad \Longrightarrow \quad F = -k_B T \ln Z = E_i - k_B T \ln P_i$$

Let us write $Z = \sum_{i} e^{-E_{i}/k_{B}T} = e^{-F/k_{B}T}$ $P_{i} = \frac{e^{-E_{i}/k_{B}T}}{Z} \implies F = -k_{B}T \ln Z = E_{i} - k_{B}T \ln P_{i}$ $\implies \sum_{i} P_{i}F = \sum_{i} P_{i}E_{i} - k_{B}T \sum_{i} P_{i} \ln P_{i}$

Equilibrium (Boltzmann) distribution is the minimum of the free energy

Second Order Phase Transition

Order parameter (magnetization)

$$m = \left\langle \sum_{i=1}^{N} \boldsymbol{\sigma}_{i}^{z} \right\rangle$$

First Order Phase Transition

Order parameter (magnetization)

 $m = \langle$

Quantum Phase Transition

Quantum Phase Transition

Minimum of the free energy is the ground state

Classical vs. Quantum

	Classical	Quantum
Free energy:	$F = \overline{E} - TS$	$F = \overline{E} - \Gamma K$
Measure of disorder:	$S = -k_B \sum_i P_i \ln P_i$	$K = \langle \psi \sum_{i} \sigma_{i}^{x} \psi \rangle$
Free energy minimum:	Thermal equilibrium	Ground state
Disorder:	Thermal mixing	Superposition
Control parameter	T	Γ

AQC and Quantum Phase Transition

AQC Hamiltonian:

$$H = (1 - \lambda)H_{B} + \lambda H_{P} = \lambda \left(H_{P} - \Gamma \sum_{i=1}^{N} \sigma_{i}^{x}\right)$$
$$\Gamma = \frac{\Delta(1 - \lambda)}{\lambda}$$

- $\lambda = 0$ Complete disorder (superposition)
- $\lambda = 1$ Complete order (unique ground state)
- $\lambda = \lambda_c$ Transition from disorder to order (quantum critical point)

2nd Order Quantum Phase Transition

2nd Order Quantum Phase Transition

Order Parameter

• 21 •

Spectral Gap

S. Sachdev, "Quantum Phase Transitions", Cambridge University Press (1999)

Correlation function:

At the critical point all correlation lengths diverge

 X_i

• 22 •

Spectral Gap

For an infinitely large system

$$L \rightarrow \infty$$

$$\xi \rightarrow \infty \qquad g_{\min} \rightarrow 0$$

For a finite size system

L

Dynamic critical exponent: $1 \le z \le 2$

1st Order Quantum Phase Transition

Perturbation Expansion

M. H. S. Amin and V. Choi, PRA 80, 062326 (2009)

 $H = H_0 + H'$

Unperturbed Hamiltonian: *H*

 $H_0 = \lambda H_P$

Perturbation Hamiltonian:

 $H' = (1 - \lambda)H_B$

 H_B can only cause single bit flips

Oth Order Perturbation

$$E_{\alpha} = E_{\alpha}^{(0)} + E_{\alpha}^{(1)} + E_{\alpha}^{(2)} + \dots$$
$$H_{0} = \lambda H_{P} \quad \Longrightarrow \quad E_{\alpha}^{(0)} = \lambda E_{\alpha}^{P}$$

1st Order Perturbation

$$E_{\alpha} = E_{\alpha}^{(0)} + E_{\alpha}^{(1)} + E_{\alpha}^{(2)} + \dots$$

$$E_{\alpha}^{(1)} = (1-\lambda) \langle \alpha^{(0)} | H_B | \alpha^{(0)} \rangle = 0$$

2nd Order Perturbation

2nd Order Perturbation

Minimum Gap

Minimum Gap Minimum bit flips = f $H' = (1 - \lambda) \Delta \sum \sigma_j^x$ $\widetilde{H}_{LG} = \sum_{l_{1}\notin\mathcal{S}} \frac{\langle L^{(0)} | H' | l_{1}^{(0)} \rangle \langle l_{1}^{(0)} | H' | l_{2}^{(0)} \rangle \dots \langle l_{m-1}^{(0)} | H' | G^{(0)} \rangle}{(E_{G}^{(0)} - E_{L_{1}}^{(0)}) (E_{G}^{(0)} - E_{L_{2}}^{(0)}) \dots (E_{G}^{(0)} - E_{L_{1}}^{(0)})},$ $\widetilde{H}_{GL} = \sum_{l_i \notin \mathcal{S}} \frac{\langle G^{(0)} | H' | l_1^{(0)} \rangle \langle l_1^{(0)} | H' | l_2^{(0)} \rangle \dots \langle l_{m-1}^{(0)} | H' | L^{(0)} \rangle}{(E_L^{(0)} - E_{l_1}^{(0)}) (E_L^{(0)} - E_{l_2}^{(0)}) \dots (E_r^{(0)} - E_r^{(0)})}$ $g_{\min} = 2\sqrt{\widetilde{H}_{LG}\widetilde{H}_{GL}}$

$$g_{\min} \sim \left[\frac{(1-\lambda^*)\Delta}{\lambda^* \mathcal{E}} \right]^{f}$$
 Hamming distance between global and local minima

What type of local minimum can create first order quantum phase transition?

What type of local minimum can create first order quantum phase transition?

Answer: A local minimum that can benefit more from the kinetic part than the global minimum

The system should move more freely within the local than the global minimum (more possibilities with less energy cost)

Maximum Independent Set (MIS) Problem

An independent set in a graph is a set of vertices that are not connected directly to each other

MIS is NP-hard

(Weighted) MIS Hamiltonian

$$H_{P} = -4 \left\{ \sum_{i} W_{i} x_{i} - \sum_{i,j} J_{ij} x_{i} x_{j} \right\} \qquad x_{i} \in \{0,1\}, \quad J_{ij} > W_{i}, W_{j}$$

(Weighted) MIS Hamiltonian

$$H_{P} = -4 \left\{ \sum_{i} W_{i} x_{i} - \sum_{i,j} J_{ij} x_{i} x_{j} \right\} \qquad x_{i} \in \{0,1\}, \quad J_{ij} > W_{i}, W_{j}$$

$$x_i = \frac{1 + \sigma_i^z}{2}$$

$$H_P = -\sum_i h_i \sigma_i^z + \sum_{i,j} J_{ij} \sigma_i^z \sigma_j^z$$

$$h_i = 2W_i - \sum_j J_{ij}$$

M. H. S. Amin and V. Choi, PRA 80, 062326 (2009)

Weighted MIS

J = 2 $\Delta = 1$

Spectral Gap

Two Interesting Quantities

Magnetization (as an order parameter):

$$M = \frac{1}{N} \sum_{i=1}^{N} \langle \psi_0 | \sigma_i^z | \psi_0 \rangle$$

Spread of the wave-function:

$$S = \frac{1}{2^{N}} \left[\sum_{n=1}^{2^{N}} |\langle \psi_{0} | n \rangle| \right]^{2}$$

$$|\psi_0\rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^m |i\rangle$$
 $\Box > S = \frac{m}{2^N}$

S = fraction of states participating in the superposition

Order Parameter & Wave Function Spread

Minimum Gap

Barrier height
$$\Delta U = 4(2-W) \rightarrow 0$$

 $\Delta E = 12(2-W) \rightarrow 0$ as $W \rightarrow 2$

• 47 •

Minimum Gap

Barrier height
$$\Delta U = 4(2-W) \rightarrow 0$$

 $\Delta E = 12(2-W) \rightarrow 0$ as $W \rightarrow 2$

Controversy

M. H. S. Amin and V. Choi, PRA 80, 062326 (2009)

B. Altshuler, H. Krovi, and J. Roland, arXiv:0908.2782, PNAS 107, 12446 (2010) (See Altshuler's presentation on July 23)

E. Farhi, J. Goldstone, D. Gosset, S. Gutmann, H. B. Meyer and P. Shor, arXiv:0909.4766

A.P. Young, S. Knysh, V.N. Smelyanskiy, PRL 104, 020502 (2010)

T. Jorg, F. Krzakala, G. Semerjian, and F. Zamponi, PRL 104, 207206 (2010)

S. Knysh, V.N. Smelyanskiy, arXiv:1005.3011

V. Choi, arXiv:1004.2226 (See Choi's presentation on July 23)

N. Dickson, M.H.S. Amin, (See Dickson's poster on July 24)