
Topological Quantum Computing

Fault Tolerant Quantum Computation by Anyons,
A. Yu. Kitaev, Annals Phys. 303, 2 (2003). (quant-ph/9707021)

A Modular Functor Which is Universal for Quantum Computation,
M.H. Freedman, M. Larsen and Z. Wang, Comm. Math. Phys. 227, 605 (2002).

Main original sources:

Non-Abelian Anyons and Topological Quantum Computation,
C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).  (arXiv:0707.1889v2)

Lectures on Topological Quantum Computation,
J. Preskill, Available online at: www.theory.caltech.edu/~preskill/ph219/topological.pdf

Some excellent reviews:

NEB,  L. Hormozi,  G. Zikos, S.H. Simon,  Phys. Rev. Lett. 95 140503 (2005).
S.H. Simon, NEB, M.Freedman, N, Petrovic, L. Hormozi, Phys. Rev. Lett. 96, 070503 (2006).
L. Hormozi, G. Zikos, NEB, and S.H. Simon, Phys. Rev. B 75, 165310 (2007). 
L. Hormozi, NEB, and S.H. Simon, Phys. Rev. Lett. 103, 160501 (2009).

Also:

Nick Bonesteel,   Florida State University



Early Digital Memory

Stone



Early Digital Memory

= 0



Early Digital Memory

= 1



Early Digital Memory

= 1

The iStone





Early Digital Memory

The iStone: 1 bit



Early Digital Memory

The iStone 4: ~ 20 bits



Modern Digital Memory

The iPhone 4: ~ 2.6 x 1011 bits



Modern Digital Memory

The iPod: ~ 1.4 x 1012 bits



Modern Digital Memory

http://en.wikipedia.org/wiki/Hard_disk_drive
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Magnetic Order = 0
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Magnetic Order

Magnetic Order = 1
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A spin-1/2 particle:



Magnetic Order

Magnetic Order = 1

“spin up” “spin down”

A spin-1/2 particle:

Terrific for storing 
classical information, 
but useless for quantum 
Information.
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Universal Quantum Gates
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Controlled-Not

Any N qubit operation can be carried 
out using these two gates.
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One way to go…

Loss and DiVincenzo, ‘98

| 0    = |1    =

Manipulate electron spins with electric and magnetic fields to 
carry out quantum gates.

Problem:  Errors and Decoherence!  May be solvable, but it 
won’t be easy!



Topological Order  (Wen & Niu, PRB 41, 9377 

(1990))
Conventionally Ordered States:  Multiple “broken symmetry” 
ground states characterized by a locally observable order 
parameter.

Topologically Ordered States:  Multiple ground states on 
topologically nontrivial surfaces with no locally observable 
order parameter.

2

1+== zSm

odd

odd

even

odd

odd

even

even

even

magnetization

2

1−== zSm

magnetization

Nature’s classical error correcting codes !

Nature’s quantum error correcting codes ?



Quantum Circuit

U

U

What braid corresponds to this circuit?
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Quantum superposition
of many valence-bond 
states:  A “spin liquid .”
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Is it a |0    or a |1   ?
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Is it a |0    or a |1   ?



Storing a Qubit

α β+

Environment can measure the state of the qubit by a local 
measurement – any quantum superposition will decohere 
almost instantly.

Bad Qubit!



α β+
Odd Even

Environment can only measure the state of the qubit by a 
global measurement – quantum superposition should have 
long coherence time.

Storing a Qubit

Good Qubit!



α β+
Odd Even

Storing a Qubit

Topologically Ordered States (Wen & Niu, ‘90) :  Multiple ground 
states on topologically nontrivial surfaces with no locally 
observable order parameter. 

odd

odd

even

odd

odd

even

even

even

Nature’s quantum error correcting codes ?
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Conventional Order: Excitations

Spin flip:  “quasiparticle ” with total Sz =+1



Topological Order: Excitations



Topological Order: Excitations



Topological Order: Excitations

Breaking a bond creates an excitation with Sz = 1



Topological Order: Excitations

Breaking a bond creates an excitation with Sz = 1



Topological Order: Excitations

Breaking a bond creates an excitation with Sz = 1



Fractionalization

Sz = 1 excitation fractionalizes into two Sz = ½ quasiparticles.



Fractional Quantum Hall States

B

A two dimensional gas of electrons in a strong 
magnetic field B.

Electrons



Fractional Quantum Hall States

B Quantum Hall Fluid

An incompressible quantum liquid can form when 
the Landau level filling fraction νννν = nelec(hc/eB) is a 
rational fraction.



Charge Fractionalization

Electron
(charge = e)

Quasiparticles
(charge = e/3 for νννν=1/3)

When an electron is added to a FQH state it can be 
fractionalized --- i.e., it can break apart into 
fractionally charged quasiparticles.



Topological Degeneracy (Wen & Niu, PRB 41, 9377 (1990))

As in our spin-liquid example, FQH states on topologically 
nontrivial surfaces have degenerate ground states which can 
only be distinguished by global measurements .

Degeneracy

1

3

9

For the νννν = 1/3 state:

… 3N

1 2 N



“Non-Abelian” FQH States (Moore & Read ‘91)

Fractionally charged quasiparticles

A degenerate Hilbert space whose dimensionality is 
exponentially large in the number of quasiparticles .

States in this space can only be distinguished by global 
measurements provided quasiparticles are far apart.

Essential features:

A perfect place to hide quantum information!



Identical Quantum Particles

( ) ( )2112 ,, rrrr ψλψ =

( )21 , rrψ

( ) ( )12
2

21 ,, rrrr ψλψ =

Two exchanges = Identity λ2 = 1

λ = +1    Bosons λ = −1    Fermions

One exchange

A second exchange

r1 r2

Photons, He4 atoms, Gluons… Electrons, Protons, Neutrons…



Particle Exchange in 2+1 Dimensions

2 space dimensions

1 time
dimension

Particle “world-lines” form braids in 2+1 (=3) dimensions



Particle “world-lines” form braids in 2+1 (=3) dimensions

Clockwise
exchange

Counterclockwise
exchange

Particle Exchange in 2+1 Dimensions



Fractional (Abelian) Statistics

iψ

i
i

f e ψψ ϑ=

Phase

θ = 0    Bosons 

θ = π Fermions

θ = π/3    ν=1/3 quasiparticles

Only possible for particles in 
2 space dimensions.

Anyons



Non-Abelian Statistics  (Moore & Read ’91)
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ψ i Matrix!

Matrices form a non-Abelian representation of the braid group .

(Related to the Jones Polynomial, TQFT (Witten), Conformal 
Field Theory (Moore, Seiberg), etc.)  

Non-Abelian Statistics  (Moore & Read ’91)



Many Non-Abelian Anyons

















MMM

M

aa

aa

⋯

⋮⋱⋮

⋯

1

111

i
Ψ=f

Ψ

i
Ψ

f
Ψ

…

…

time



Many Non-Abelian Anyons
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Many Non-Abelian Anyons
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Matrix depends only on the topology of the braid swept out by 
anyon world lines!

Robust quantum computation?
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Quantum Circuit

U

U

What braid corresponds to this circuit?



Possible Non-Abelian FQH States
J.S. Xia et al., PRL (2004).



Possible Non-Abelian FQH States
J.S. Xia et al., PRL (2004).

ν= 5/2:  Probable Moore-Read 
Pfaffian state.   

Charge e/4 quasiparticles described by 
SU(2)2 Chern-Simons Theory.  
Nayak & Wilczek, ’96



Possible Non-Abelian FQH States

ν = 12/5:  Possible Read-Rezayi 
“Parafermion” state. Read & Rezayi, ‘99

Charge e/5 quasiparticles described by 
SU(2)3 Chern-Simons Theory.
Slingerland & Bais ’01

Universal for Quantum Computation!
Freedman, Larsen & Wang ’02

J.S. Xia et al., PRL (2004).
ν= 5/2:  Probable Moore-Read 
Pfaffian state.   

Charge e/4 quasiparticles described by 
SU(2)2 Chern-Simons Theory.  
Nayak & Wilczek, ’96


