Topological Quantum Computing

Nick Bonesteel, Florida State University

Main original sources:

Fault Tolerant Quantum Computation by Anyons,
A. Yu. Kitaev, Annals Phys. 303, 2 (2003). (quant-ph/9707021)

A Modular Functor Which is Universal for Quantum Computation, M.H. Freedman, M. Larsen and Z. Wang, Comm. Math. Phys. 227, 605 (2002).

Some excellent reviews:

Non-Abelian Anyons and Topological Quantum Computation, C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008). (arXiv:0707.1889v2)

Lectures on Topological Quantum Computation,
J. Preskill, Available online at: www.theory.caltech.edu/~preskill/ph219/topological.pdf

Also:

NEB, L. Hormozi, G. Zikos, S.H. Simon, Phys. Rev. Lett. 95140503 (2005).
S.H. Simon, NEB, M.Freedman, N, Petrovic, L. Hormozi, Phys. Rev. Lett. 96, 070503 (2006).
L. Hormozi, G. Zikos, NEB, and S.H. Simon, Phys. Rev. B 75, 165310 (2007).
L. Hormozi, NEB, and S.H. Simon, Phys. Rev. Lett. 103, 160501 (2009).

Early Digital Memory

Early Digital Memory

Early Digital Memory

Early Digital Memory

The iStone

Early Digital Memory

The iStone: 1 bit

Early Digital Memory

The iStone 4: ~ 20 bits

Modern Digital Memory

The iPhone 4: ~ 2.6×10^{11} bits

Modern Digital Memory

The iPod: ~ 1.4×10^{12} bits

Modern Digital Memory

http://en.wikipedia.org/wiki/Hard_disk_drive

Magnetic Order

A spin-1/2 particle:

"spin down"

Magnetic Order

A spin-1/2 particle:

"spin down"

Many spin-1/2 particles:

Magnetic Order

A spin-1/2 particle:

Magnetic Order

Magnetic Order

A spin-1/2 particle:

Magnetic Order

Magnetic Order

A spin-1/2 particle:

\oint "spin down"

中
$=0$

Magnetic Order

A spin-1/2 particle:
\& "spin up"

Magnetic Order

A spin-1/2 particle:
§ "spin up" \oint "spin down"

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Many spin-1/2 particles:

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Another Kind of Order

A valence bond:
$\circlearrowright=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)$

Another Kind of Order

A valence bond:
$\circlearrowright=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)$

Universal Quantum Gates

Single Qubit Rotation

$$
|\psi\rangle-\sqrt{U_{\vec{\phi}}}-U_{\vec{\phi}}|\psi\rangle
$$

Controlled-Not

Any N qubit operation can be carried out using these two gates.

$$
\left|\Psi_{f}\right\rangle=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 M} \\
\vdots & \ddots & \vdots \\
a_{M 1} & \cdots & a_{M M}
\end{array}\right)\left|\Psi_{i}\right\rangle
$$

Universal Quantum Gates

Single Qubit Rotation

Controlled Not

$|1\rangle-\infty-\quad|1\rangle$
$|0\rangle-\quad|1\rangle$

Any N qubit operation can be carried out using these two gates.

$$
\left|\Psi_{f}\right\rangle=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 M} \\
\vdots & \ddots & \vdots \\
a_{M 1} & \cdots & a_{M M}
\end{array}\right)\left|\Psi_{i}\right\rangle
$$

One way to go... |0> = $\uparrow \quad|1\rangle=\downarrow$

Loss and DiVincenzo, '98

Manipulate electron spins with electric and magnetic fields to carry out quantum gates.

Problem: Errors and Decoherence! May be solvable, but it won't be easy!

Topological Order

Conventionally Ordered States: Multiple "broken symmetry" ground states characterized by a locally observable order parameter.

$$
\begin{aligned}
& 44444 \text { magnetization } \\
& m=\left\langle S_{z}\right\rangle=+\frac{1}{2}
\end{aligned}
$$

Topologically Ordered States: Multiple ground states on topologically nontrivial surfaces with no locally observable order parameter.

Nature's quantum error correcting codes?

Quantum Circuit

What braid corresponds to this circuit?

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Another Kind of Order

A valence bond:
$\circlearrowright=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)$

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Another Kind of Order

A valence bond:
$\circlearrowright=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)$

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Quantum superposition of many valence-bond states: A "spin liquid."

Another Kind of Order

A valence bond:
$\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)$

Another Kind of Order

A valence bond:
$\circlearrowright=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)$

Another Kind of Order

A valence bond:

$$
\bigcirc=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Another Kind of Order

A valence bond:

$$
\bigcirc=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

$|0\rangle$

Odd

Another Kind of Order

A valence bond:
$\Longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)$

$$
|1\rangle
$$

Another Kind of Order

A valence bond:

$$
\longrightarrow=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

$$
|1\rangle
$$

Is it a 0 or a 1？

中 中 个 4 8 8

\ddagger

8

\ddagger

ϕ

8

1 Δ
Δ
－
，

申 1
\＄$\$$

1

，
－
\uparrow

中

Δ
中
$1 \rightarrow \uparrow \uparrow \uparrow$
中 1
中
中

\ddagger

$\$$
1 1都
I
\qquad

4
4
\uparrow

Is it a $|0\rangle$ or a $|1\rangle$?

Is it a $|0\rangle$ or a $|1\rangle$?

Is it a $|0\rangle$ or a $|1\rangle$?

Is it a $|0\rangle$ or a $|1\rangle$?

Storing a Qubit

Environment can measure the state of the qubit by a local measurement - any quantum superposition will decohere almost instantly.

Bad Qubit!

Storing a Qubit

Environment can only measure the state of the qubit by a global measurement - quantum superposition should have long coherence time.

Good Qubit!

Storing a Qubit

Topologically Ordered States (Wen \& Niu, ‘90) : Multiple ground states on topologically nontrivial surfaces with no locally observable order parameter.

odd

even

odd

even

Nature's quantum error correcting codes?

Conventional Order: Excitations

Conventional Order: Excitations

Conventional Order: Excitations

Topological Order: Excitations

Fractionalization

$$
S_{z}=1 \text { excitation fractionalizes into two } S_{z}=1 / 2 \text { quasiparticles. }
$$

Fractional Quantum Hall States

A two dimensional gas of electrons in a strong magnetic field \mathbf{B}.

Fractional Quantum Hall States

An incompressible quantum liquid can form when the Landau level filling fraction $v=\mathbf{n}_{\text {elec }}(\mathbf{h c} / \mathbf{e B})$ is a rational fraction.

Charge Fractionalization

When an electron is added to a FQH state it can be fractionalized --- i.e., it can break apart into fractionally charged quasiparticles.

Topological Degeneracy (Wen \& Niu, PRB 41, 9377 (1990))

As in our spin-liquid example, FQH states on topologically nontrivial surfaces have degenerate ground states which can only be distinguished by global measurements.

For the $v=1 / 3$ state:

Degeneracy

"Non-Abe|ian" FOH StateS (Moore \& Read '91)

Fractionally charged quasiparticles

Essential features:

A degenerate Hilbert space whose dimensionality is exponentially large in the number of quasiparticles.

States in this space can only be distinguished by global measurements provided quasiparticles are far apart.

A perfect place to hide quantum information!

Identical Quantum Particles

$$
\begin{array}{cc|}
r_{1} & r_{2} \\
\bigcirc & \bigcirc
\end{array}\left|\psi\left(r_{1}, r_{2}\right)\right\rangle
$$

One exchange

$$
\left|\psi\left(r_{2}, r_{1}\right)\right\rangle=\lambda\left|\psi\left(r_{1}, r_{2}\right)\right\rangle
$$

A second exchange

$$
\left|\psi\left(r_{1}, r_{2}\right)\right\rangle=\lambda^{2}\left|\psi\left(r_{2}, r_{1}\right)\right\rangle
$$

Two exchanges $=$ Identity $\quad \longrightarrow \quad \lambda^{2}=1$

$$
\lambda=+1 \quad \text { Bosons }
$$

Photons, He^{4} atoms, Gluons...

$$
\lambda=-1 \quad \text { Fermions }
$$

Electrons, Protons, Neutrons...

Particle Exchange in 2+1 Dimensions

Particle "world-lines" form braids in 2+1 (=3) dimensions

Particle Exchange in 2+1 Dimensions

Particle "world-lines" form braids in $2+1$ (=3) dimensions

Fractional (Abelian) Statistics

$$
\left|\psi_{f}\right\rangle=e^{i \vartheta}\left|\psi_{i}\right\rangle
$$

 $\left|\psi_{i}\right\rangle \quad$ Phase
$\theta=0 \quad$ Bosons
$\theta=\pi \quad$ Fermions
$\theta=\pi / 3 \quad v=1 / 3$ quasiparticles
Anyons
Only possible for particles in 2 space dimensions.

Non-Abelian Statistics (Moore 8 Read'91)

Non-Abelian Statistics (Moore \& Read 91)

Matrices form a non-Abelian representation of the braid group.
(Related to the Jones Polynomial, TQFT (Witten), Conformal Field Theory (Moore, Seiberg), etc.)

Many Non-Abelian Anyons

time

Many Non-Abelian Anyons

time

Many Non-Abelian Anyons

time

$$
\left|\Psi_{f}\right\rangle=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 M} \\
\vdots & \ddots & \vdots \\
a_{M 1} & \cdots & a_{M M}
\end{array}\right)\left|\Psi_{i}\right\rangle
$$

Matrix depends only on the topology of the braid swept out by anyon world lines!
Robust quantum computation?

Universal Quantum Gates

Single Qubit Rotation

$$
|\psi\rangle-\sqrt{U_{\vec{\phi}}}-U_{\vec{\phi}}|\psi\rangle
$$

Controlled-Not

Any N qubit operation can be carried out using these two gates.

$$
\left|\Psi_{f}\right\rangle=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 M} \\
\vdots & \ddots & \vdots \\
a_{M 1} & \cdots & a_{M M}
\end{array}\right)\left|\Psi_{i}\right\rangle
$$

Quantum Circuit

What braid corresponds to this circuit?

Possible Non-Abelian FQH States

J.S. Xia et al., PRL (2004).

Possible Non-Abelian FQH States

J.S. Xia et al., PRL (2004).

$V=5 / 2$: Probable Moore-Read Pfaffian state.

Charge e/4 quasiparticles described by $S U(2){ }_{2}$ Chern-Simons Theory.
Nayak \& Wilczek, '96

Possible Non-Abelian FQH States

J.S. Xia et al., PRL (2004).

$V=5 / 2$: Probable Moore-Read Pfaffian state.

Charge e/4 quasiparticles described by $S U(2)_{2}$ Chern-Simons Theory.
Nayak \& Wilczek, '96
$v=12 / 5$: Possible Read-Rezayi
"Parafermion" state. Read \& Rezayi, '99
Charge e/5 quasiparticles described by $S U(2){ }_{3}$ Chern-Simons Theory. Slingerland \& Bais '01

Universal for Quantum Computation! Freedman, Larsen \& Wang '02

