Braid Group on n-Strands: B_{n}

Braid Group on n-Strands: B_{n}

Some Elements of B_{4}

Braid Group on n-Strands: B_{n}

Some Elements of B_{4}

Not a Braid:

Braid Group on n-Strands: B_{n}

Some Elements of B_{4}

Group Multiplication

Braid Group on n-Strands: B_{n}

Some Elements of B_{4}

Group Multiplication

Braid Group on n -Strands: B_{n}

Some Elements of B_{4}

Group Multiplication

Elementary Braid Operations

σ_{i} : Braid $\mathrm{ith}^{\text {th }}$ strand over $\mathrm{i}+1^{\text {st }}$ strand

σ_{i} 's and their inverses generate the braid group

Braid Relations

$$
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
$$

$$
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad|i-j| \geq 2
$$

Matrix Rep of B_{3} from Fib Anyons

Matrix Rep of B_{3} from Fib Anyons

$\xrightarrow{\text { time }}$

$$
\sigma_{1}=R=\left(\begin{array}{cc}
e^{-i 4 \pi / 5} & 0 \\
0 & e^{i 3 \pi / 5}
\end{array}\right)
$$

Matrix Rep of B_{3} from Fib Anyons

Matrix Rep of B_{3} from Fib Anyons

$$
\sigma_{2}=F R F=\left(\begin{array}{cc}
-\tau e^{-i \pi / 5} & \sqrt{\tau} e^{-i 3 \pi / 5} \\
\sqrt{\tau} e^{-i 3 \pi / 5} & -\tau
\end{array}\right)
$$

Elementary Braid Matrices

$$
\left(Q_{a} \circlearrowright \sigma_{2}=F \sigma_{1} F=\left(\begin{array}{cc}
-\tau e^{-i \pi / 5} & \sqrt{\tau} e^{-i 3 \pi / 5} \\
\sqrt{\tau} e^{-i 3 \pi / 5} & -\tau
\end{array}\right)\right.
$$

Qubit Encoding

Qubit States

State of qubit is determined by q-spin of two leftmost particles

Non-Computational State

Transitions to this state are leakage errors

Initializing a Qubit

Pull two quasiparticle-quasihole pairs out of the "vacuum".

These three particles have total q-spin 1

Initializing a Qubit

Pull two quasiparticle-quasihole pairs out of the "vacuum".

Initializing a Qubit

Pull two quasiparticle-quasihole pairs out of the "vacuum".

Measuring a Qubit

Try to fuse the leftmost quasiparticle-quasihole pair.

Measuring a Qubit

If they fuse back into the "vacuum" the result of the measurement is 0 .

|0)

Measuring a Qubit

If they cannot fuse back into the "vacuum" the result of the measurement is 1

|1)

Single Qubit: The Bloch Sphere

Single Qubit Operations: Rotations

$$
\stackrel{\rightharpoonup}{\alpha}=\text { rotation vector }
$$

0)

Direction of $\vec{\alpha}$ is the rotation axis

Magnitude of $\vec{\alpha}$ is the rotation angle
|1)

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2} e^{-i \phi}|1\rangle
$$

Single Qubit Operations: Rotations

$$
\begin{aligned}
& \vec{\alpha}=\text { rotation vector } \\
& |\psi\rangle \quad U_{\vec{\alpha}}=\exp \frac{i \vec{\alpha} \cdot \vec{\sigma}}{2} \\
& |\psi\rangle-U_{\vec{\alpha}}-U_{\vec{\alpha}}|\psi\rangle
\end{aligned}
$$

Single Qubit Operations: Rotations

Single Qubit Operations: Rotations

General rule: Braiding inside an oval does not change the total topological charge of the enclosed particles.

Important consequence: As long as we braid within a qubit, there is no leakage error.

Can we do arbitrary single qubit rotations this way?

$\mathrm{N}=1$

$\mathrm{N}=2$

ance

$$
\mathrm{N}=3
$$

$$
\mathrm{N}=4
$$

$$
\mathrm{N}=5
$$

$$
\mathrm{N}=6
$$

$$
\mathrm{N}=7
$$

$$
\mathrm{N}=8
$$

$$
\mathrm{N}=9
$$

$$
\mathrm{N}=10
$$

$$
\mathrm{N}=11
$$

Brute Force Search

$$
\sigma_{1}^{-2} \sigma_{2}^{-4} \sigma_{1}^{4} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{2} \sigma_{2}^{-4} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{-2}=\left(\begin{array}{|cc|c}
0 & i & 0 \\
i & 0 & 0 \\
\hline 0 & 0 & 1
\end{array}\right)+O\left(10^{-3}\right)
$$

Brute Force Search

$$
\sigma_{1}^{-2} \sigma_{2}^{-4} \sigma_{1}^{4} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{2} \sigma_{2}^{-4} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{-2}=\left(\begin{array}{cc|c}
0 & i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+O\left(10^{-3}\right)
$$

For brute force search:
Braid Length $\sim|\ln \varepsilon|$

L. Hormozi, G. Zikos, NEB, S.H. Simon, PRB ‘07

Brute Force Search

$$
\sigma_{1}^{-2} \sigma_{2}^{-4} \sigma_{1}^{4} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{2} \sigma_{2}^{-4} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{-2}=\left(\begin{array}{cc|c}
\hline 0 & i & 0 \\
i & 0 & 0 \\
\hline 0 & 0 & 1
\end{array}\right)+O\left(10^{-3}\right)
$$

Brute force searching rapidly becomes infeasible as braids get longer.

Fortunately, a clever algorithm due to Solovay and Kitaev allows for systematic improvement of the braid given a sufficiently dense covering of $S U(2)$.

Solovay-Kitaev Construction

What About Two Qubit Gates?

Problems:

1. We are pulling quasiparticles out of qubits: Leakage error!
2. 87 dimensional search space (as opposed to 3 for threeparticle braids). Straightforward "brute force" search is problematic.

Two Qubit Controlled Gates

Goal: Find a braid in which some rotation is performed on the target qubit only if the control qubit is in the state 1. ($b=1$)

"Weaving" a Two Qubit Gate

Weave a pair of anyons from the control qubit between anyons in the target qubit.

Important Rule: Braiding a q-spin 0 object does not induce transitions.
\rightarrow Target qubit is only affected if control qubit is in state $|1\rangle$

$$
(b=1)
$$

"Weaving" a Two Qubit Gate

Only nontrivial case is when the control pair has q -spin 1.

We've reduced the problem to weaving one anyon around three others. Still too hard for brute force approach!

Try Weaving Around Just Two Anyons

We're back to B_{3}, so this is numerically feasible.

Question: Can we find a weave which does not lead to leakage errors?

A Trick: Effective Braiding

Actual Weaving

Effective Braiding

$$
\begin{aligned}
& \approx \\
& \sigma_{2}^{3} \sigma_{1}^{2} \sigma_{2}^{-4} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{-2} \sigma_{1}^{-2} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{-2} \sigma_{2}^{2} \sigma_{1}^{4} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2} \approx \sigma_{1}^{2}
\end{aligned}
$$

The effect of weaving the blue anyon through the two green anyons has approximately the same effect as braiding the two green anyons twice.

Controlled-"Knot" Gate

Effective braiding is all within the target qubit \Rightarrow No leakage!
Not a CNOT, but sufficient for universal quantum computation.

SK Improved Controlled-"Knot" Gate

T

PR
25

Another Trick: Injection Weaving

$$
\begin{aligned}
& \sigma_{2}^{3} \sigma_{1}^{-2} \sigma_{2}^{-4} \sigma_{1}^{2} \sigma_{2}^{4} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{-2} \sigma_{2}^{-4} \sigma_{1}^{-4} \sigma_{2}^{-2} \sigma_{1}^{4} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{3} \approx\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
\hline 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Step 1: Inject the control pair into the target qubit.

Another Trick: Injection Weaving

Step 2: Weave the control pair inside the injected target qubit.

$$
\begin{aligned}
& \underset{1}{\substack{\text { control } \\
\text { pair }}}(\underset{\sim}{e}) \geq \int^{\Omega} \frac{1}{1} \\
& \sigma_{1}^{-2} \sigma_{2}^{-4} \sigma_{1}^{4} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{-2} \sigma_{2}^{4} \sigma_{1}^{2} \sigma_{2}^{-4} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{-2} \approx\left(\begin{array}{ll|l}
0 & i & 0 \\
i & 0 & 0 \\
\hline 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Another Trick: Injection Weaving

Step 3: Extract the control pair from the target using the inverse of the injection weave.

Putting it all together we have a CNOT gate:

SK Improved Controlled-NOT Gate

ㄴx

 N

Nosccer
 Noxnenk

20~T

Universal Set of Gates

Single qubit rotations: $|\psi\rangle-U_{\vec{\phi}}-U_{\vec{\phi}}|\psi\rangle$

Controlled NOT:

NEB, L. Hormozi, G. Zikos, S.H. Simon, Phys. Rev. Lett. 95140503 (2005)

Quantum Circuit

What braid corresponds to this circuit?

Quantum Circuit

Braid

Turning any Braid into a Weave

Turning any Braid into a Weave

Turning any Braid into a Weave

Turning any Braid into a Weave

Turning any Braid into a Weave

Topological Quantum Computing with Only One Mobile Quasiparticle

S. H. Simon, ${ }^{1}$ N.E. Bonesteel, ${ }^{2}$ M. H. Freedman, ${ }^{3}$ N. Petrovic, ${ }^{1}$ and L. Hormozi ${ }^{2}$
${ }^{1}$ Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974, USA
${ }^{2}$ Department of Physics and NHMFL, Florida State University, Tallahassee, Florida 32310, USA
${ }^{3}$ Microsoft Research, One Microsoft Way, Redmond, Washington 98052, USA

We know it is possible to carry out universal quantum computation by moving only a single particle.

Can we find an efficient CNOT construction in which only a single particle is woven through the other particles?

Another Useful Braid: The F-Braid

F-Braid:

Single Particle Weave Gate: Part 1

Single Particle Weave Gate: Part 1

F-Braid

Single Particle Weave Gate: Part 1

F-Braid

Single Particle Weave Gate: Part 1

Intermediate State

Single Particle Weave Gate: Part 1

Single Particle Weave Gate: Part 2

Phase Braid

Single Particle Weave Gate: Part 2

Single Particle Weave Gate: Part 2

Single Particle Weave Gate: Part 3

Controlled-Phase Gate

Intermediate state

Final result

$$
U=-\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)+O\left(10^{-3}\right)
$$

SK Improved Controlled-Phase Gate

Universal "One-Particle Weave" Gates

Single qubit rotations: $|\psi\rangle-U_{\vec{\phi}}-U_{\vec{\phi}}|\psi\rangle$

Controlled-Phase gate:

L. Hormozi, G. Zikos, NEB, and S.H. Simon, Phys. Rev. B 75, 165310 (2007).

How Big is Shor's Braid?

How many elementary braids are required to factor a K-bit number N using Shor's algorithm?

Bottleneck: Modular Exponentiation requires ~ K^{3} gates.

$$
U_{\operatorname{modexp}}|a\rangle_{i}|0\rangle_{o}=|a\rangle_{i}\left|x^{a}(\bmod N)\right\rangle_{o}
$$

Specific requirements:

$$
\begin{array}{ll}
\sim 3 K & \text { Qubits } \\
\sim 40 K^{3} & \text { NOT gates } \\
\sim 28 K^{3} & \text { CNOT gates } \\
\sim 92 K^{3} & \text { CCNOT (Toffoli) gates }
\end{array}
$$

Beckman, Chari, Devabhaktuni, Preskill, PRA 54, 1034 (1996).

Quantum Gates for Modular Exp

NOT Gate:

G. Zikos, et al., Int. J. Mod. Phys. B 23, 2727 (2009).

Length (measured in elementary braids) grows logarithmically with decreasing error:

$$
L_{N O T} \approx 18\left|\log _{10} \varepsilon\right|
$$

Roughly same scaling seen for all "three-weaves"

Quantum Gates for Modular Exp

CNOT Gate:

CNOT is constructed using 3 three-weaves plus 2 single qubit rotations for a total of 5 three-weaves.

$$
L_{C N O T} \approx 5 L_{\text {NOT }} \approx 90\left|\log _{10} \varepsilon\right|
$$

Quantum Gates for Modular Exp

CCNOT (Toffoli) Gate:

where, $P=\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right], Q=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$

CCNOT can be constructed using 6 CNOTs (up to single qubit rotations on the target) and 9 single qubit rotations. So $6 \times 3=18$ "CNOT" threeweaves +9 "single qubit rotation" three-weaves $=27$ three-weaves.

$$
L_{C C N O T} \approx 27 L_{\text {NOT }} \approx 486\left|\log _{10} \varepsilon\right|
$$

Number of Elementary Braids

Total number of elementary braids:

$$
L_{\text {Shor }} \approx 50,000\left|\log _{10} \varepsilon\right| K^{3}
$$

For a finite probability that no error occurs, we require:

$$
|\varepsilon|^{2} \sim \frac{1}{50,000 K^{3}}
$$

To factor a 128-bit number:

M. Baraban, NEB, and S. H. Simon, PRA 81, 062317 (2010)

