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Elementary Braid Operations

σi :  Braid ith strand over i+1st strand

1σ= 2σ= 3σ=

1

3
4

2

σ1
−1 σ2 σ1

−1 σ2 σ3   

σi `s and their inverses generate the braid group



Braid Relations

111 +++ = iiiiii σσσσσσ

=

2||, ≥−= jiijji σσσσ



Matrix Rep of B3 from Fib Anyons
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Matrix Rep of B3 from Fib Anyons

a
1

time











==

−

5/3

5/4

1
0

0
π

π

σ
i

i

e

e
R

1

3

2

1

a
1

1

3

2 ?2 =σ



Matrix Rep of B3 from Fib Anyons
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Elementary Braid  Matrices
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Qubit Encoding

0 1

Non-Computational StateQubit States

1 0

=0

State of qubit is determined by
q-spin of two leftmost particles

1 0

Transitions to this state are
leakage errors

1 1
=1



Initializing a Qubit

Pull two quasiparticle-quasihole pairs out of the “vacuum”.

0 0
0

These three particles have total q-spin 1
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Initializing a Qubit

Pull two quasiparticle-quasihole pairs out of the “vacuum”.
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Measuring a Qubit

Try to fuse the leftmost quasiparticle-quasihole pair.

10 βα +

?
1



Measuring a Qubit

If they fuse back into the “vacuum” the result of the 
measurement is 0.

1
0

0



Measuring a Qubit

If they cannot fuse back into the “vacuum” the  result of the 
measurement is 1

1

1
1

1

1



Single Qubit:  The Bloch Sphere
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Single Qubit Operations: Rotations

0

ψα

α = rotation vector

Direction of α is 
the rotation axis

1
2

sin0
2

cos φφφφθθθθθθθθψψψψ ie
−+=1

Magnitude of α is 
the rotation angle



Single Qubit Operations: Rotations

0

ψ

α = rotation vector

α
exp

σα
α

��
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Single Qubit Operations: Rotations

2 π

2 π−2 π

The set of all 
single qubit 

rotations lives in 
a solid sphere of α

−2 π

2 π−2 π
a solid sphere of 

radius 2π.

ψ ψα
�U α

�U



Single Qubit Operations: Rotations

Important consequence:  As long as we braid within a 
qubit, there is no leakage error.

General rule:  Braiding inside an oval does not change the total 
topological charge of the enclosed particles.

Can we do arbitrary single qubit rotations this way?

1 1



2 π

2 π−2 π

σ1
2

−2 πσ2
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Brute Force Search
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Brute Force Search
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Braid Length

Braid Length |ln| ε
For brute force search: |lnε |

L. Hormozi, G. Zikos, NEB, S.H. Simon, PRB ‘07



Brute Force Search
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Brute force searching rapidly becomes infeasible as 

braids get longer.

Fortunately, a clever algorithm due to Solovay and 

Kitaev allows for systematic improvement of the braid 

given a sufficiently dense covering of SU(2).



Solovay-Kitaev Construction
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What About Two Qubit Gates?

a
1

?
?

b
1 ?

?

Problems:
1. We are pulling quasiparticles out of qubits: Leakage error!

2. 87 dimensional search space (as opposed to 3 for three-
particle braids).  Straightforward “brute force” search is 
problematic.



Two Qubit Controlled Gates

b

1

Control qubit

a

1

Goal: Find a braid in which some rotation is performed on 
the target qubit only if the control qubit is in the state 1.  
(b=1)

Target qubit



“Weaving” a Two Qubit Gate
Weaveapair of anyons from the control qubitbetween anyons in 
the target qubit.  

control
pair

b

1

Important Rule: Braiding a q-spin 0 object does not induce transitions.

Target qubit is only affected if control qubit is in state   1

(b = 1)

a

1



“Weaving” a Two Qubit Gate
Only nontrivial case is when the control pair has q-spin 1.  

control
pair

1

a

We’ve reduced the problem to weaving one anyon around 
three others.   Still too hard for brute force approach!

1



Try Weaving Around Just Two Anyons

control
pair

We’re back to B3, so this is numerically feasible.

1

Question:  Can we find a weave which does not lead to 
leakage errors?

a

1



A Trick:  Effective Braiding

Actual Weaving EffectiveBraiding

The effect of weaving the blue anyonthrough the two green 
anyonshas approximately the same effect as braiding the two
green anyonstwice.



Controlled-“Knot” Gate

Effectivebraiding is all within the target qubit         No leakage!

Not a CNOT, but sufficient for universal quantum computation.



SK Improved Controlled-“Knot” Gate



Another Trick: Injection Weaving
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pair

Step 1:  Inject the control pair into the target qubit.



Another Trick: Injection Weaving
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Step 2: Weave the control pair inside the injected target qubit.

control
pair



Another Trick: Injection Weaving
Step 3: Extract the control pair from the target using the inverse of 

the injection weave.

Putting it all together we have a CNOT gate:

Injection Rotation Extraction



SK Improved Controlled-NOT Gate



Universal Set of Gates

φ
�Uψ ψφ

�USingle qubit rotations:

Controlled NOT:

NEB,  L. Hormozi,  G. Zikos, S.H. Simon,  Phys. Rev. Lett. 95 140503 (2005)



Quantum Circuit

U

U

What braid corresponds to this circuit?



Quantum Circuit
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Braid



Turning any Braid into a Weave



Turning any Braid into a Weave
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Turning any Braid into a Weave
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Turning any Braid into a Weave

II

I
I -1



Turning any Braid into a Weave

I I -1I

I
I -1

I



We know it is possible to carry out universal quantum 
computation by moving only a singleparticle.computation by moving only a singleparticle.

Can we find an efficient CNOT construction in which 
only a single particle is woven through the other 
particles?



Another Useful Braid: The F-Braid
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Single Particle Weave Gate: Part 1
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Single Particle Weave Gate: Part 1

1

a

F-Braid

1

b



Single Particle Weave Gate: Part 1
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Single Particle Weave Gate: Part 1
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Intermediate State



Single Particle Weave Gate: Part 1
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a b

0 0
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Single Particle Weave Gate: Part 2
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Phase Braid

b’ = 1 b’ = 0



Single Particle Weave Gate: Part 2

a a

a b
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Single Particle Weave Gate: Part 2
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Single Particle Weave Gate: Part 3

a

1

a

0 0

0 1

b

1

1

1
1

0
1

0
1

Phase

-1

-1

+1
-1

a b

b

a

1

b



Controlled-Phase Gate

F-Braid Inverse of F-BraidPhase-Braid
a a11

1000

0100

0010

0001

−
−=U + O(10-3)

b’

a

b b11

Intermediate
state

Final result



SK Improved Controlled-Phase Gate



Universal “One-Particle Weave” Gates

φ
�Uψ ψφ

�USingle qubit rotations:

Controlled-Phase gate:

L. Hormozi, G. Zikos, NEB, and S.H. Simon, Phys. Rev. B 75, 165310 (2007).

-Z



How Big is Shor’s Braid?

How many elementary braids are required to factor a K-bit 
number N using Shor’s algorithm?

Bottleneck:  Modular Exponentiation requires ~ K3 gates.

o

a

ioi
NxaaU )(mod0expmod =

oioiexpmod

Specific requirements:

~ 40 K3 NOT gates

~ 28 K3 CNOT gates

~ 92 K3 CCNOT (Toffoli) gates

Beckman, Chari, Devabhaktuni, Preskill, PRA 54, 1034 (1996).

~   3 K    Qubits



Quantum Gates for Modular Exp

NOT Gate:

Length (measured in elementary 
braids) grows logarithmically with 










01

10
=

braids) grows logarithmically with 
decreasing error:

ε10log18≈NOTL

Roughly same scaling seen for all
“three-weaves”

G. Zikos, et al., Int. J. Mod. Phys. B 23, 2727 (2009).



Quantum Gates for Modular Exp

CNOT Gate:

ε10log905 ≈≈ NOTCNOT LL -Z

=

CNOT is constructed using 3 three-weaves plus 2 single qubit rotations 
for a total of 5 three-weaves.

-Z

=
R(π/2 y ) R(-π/2 y )

ε10log905 ≈≈ NOTCNOT LL



Quantum Gates for Modular Exp

CCNOT (Toffoli) Gate: (from http://www.cl.cam.ac.uk/teaching/0607/QuantComp/lecture4.pdf )

=

CCNOT can be constructed using 6 CNOTs (up to single qubit rotations 
on the target) and 9 single qubit rotations.  So 6x3 = 18 “CNOT” three-
weaves + 9 “single qubit rotation” three-weaves = 27 three-weaves.

ε10log48627 ≈≈ NOTCCNOT LL



3
10 |log|000,50 KLShor ε≈

Number of Elementary Braids

Total number of elementary braids:

2 1
~||ε

For a finite probability that no error occurs, we require:

3000,50
~||

K
ε

To factor a 128-bit number:

6103~ −×ε 11106 ×≈

Number of Fibonacci anyons 1000≈

Number of elementary braids

M. Baraban, NEB, and S. H. Simon, PRA 81, 062317 (2010)


