Some Elements of B₄

Some Elements of B₄

Some Elements of B₄

Group Multiplication

Some Elements of B₄

Group Multiplication

Some Elements of B₄

Group Multiplication

Elementary Braid Operations

 σ_i : Braid ith strand over i+1st strand

 σ_i s and their inverses generate the braid group

Braid Relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i , \qquad |i-j| \ge 2$$

$$\sigma_{2} = F R F = \begin{pmatrix} -\tau e^{-i\pi/5} & \sqrt{\tau} e^{-i3\pi/5} \\ \sqrt{\tau} e^{-i3\pi/5} & -\tau \end{pmatrix}$$

Elementary Braid Matrices

$$\sigma_{1} = \begin{pmatrix} e^{-i4\pi/5} & 0 \\ 0 & e^{i3\pi/5} \end{pmatrix}$$

$$\sigma_{2} = F \sigma_{1} F = \begin{pmatrix} -\tau e^{-i\pi/5} & \sqrt{\tau} e^{-i3\pi/5} \\ \sqrt{\tau} e^{-i3\pi/5} & -\tau \end{pmatrix}$$

Qubit Encoding

Initializing a Qubit

Pull two quasiparticle-quasihole pairs out of the "vacuum".

These three particles have total q-spin 1

Initializing a Qubit

Pull two quasiparticle-quasihole pairs out of the "vacuum".

Initializing a Qubit

Pull two quasiparticle-quasihole pairs out of the "vacuum".

Measuring a Qubit

Try to fuse the leftmost quasiparticle-quasihole pair.

Measuring a Qubit

If they fuse back into the "vacuum" the result of the measurement is 0.

Measuring a Qubit

If they cannot fuse back into the "vacuum" the result of the measurement is 1

Single Qubit: The Bloch Sphere

General rule: Braiding inside an oval does not change the total topological charge of the enclosed particles.

Important consequence: As long as we braid *within* a qubit, there is no leakage error.

Can we do arbitrary single qubit rotations this way?

$$N = 2$$

$$N = 3$$

$$N = 4$$

Brute Force Search

$$\boldsymbol{\sigma}_{1}^{-2}\boldsymbol{\sigma}_{2}^{-4}\boldsymbol{\sigma}_{1}^{4}\boldsymbol{\sigma}_{2}^{-2}\boldsymbol{\sigma}_{1}^{2}\boldsymbol{\sigma}_{2}^{2}\boldsymbol{\sigma}_{1}^{-2}\boldsymbol{\sigma}_{2}^{4}\boldsymbol{\sigma}_{1}^{-2}\boldsymbol{\sigma}_{2}^{4}\boldsymbol{\sigma}_{1}^{2}\boldsymbol{\sigma}_{2}^{-4}\boldsymbol{\sigma}_{1}^{2}\boldsymbol{\sigma}_{2}^{-2}\boldsymbol{\sigma}_{1}^{2}\boldsymbol{\sigma}_{2}^{-2}\boldsymbol{\sigma}_{1}^{-2} = \begin{bmatrix} 0 & i & 0 \\ i & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + O(10^{-3})$$

Brute Force Search

L. Hormozi, G. Zikos, NEB, S.H. Simon, PRB '07

Brute Force Search

Brute force searching rapidly becomes infeasible as braids get longer.

Fortunately, a clever algorithm due to Solovay and Kitaev allows for systematic improvement of the braid given a sufficiently dense covering of *SU(2)*.

Solovay-Kitaev Construction

What About Two Qubit Gates?

Problems:

- 1. We are pulling quasiparticles out of qubits: Leakage error!
- 2. 87 dimensional search space (as opposed to 3 for threeparticle braids). Straightforward "brute force" search is problematic.

Two Qubit Controlled Gates

Goal: Find a braid in which some rotation is performed on the target qubit only if the control qubit is in the state 1. (*b*=1)

"Weaving" a Two Qubit Gate

Weave a *pair* of anyons from the control qubit between anyons in the target qubit.

Important Rule: Braiding a q-spin 0 object does not induce transitions.

Target qubit is only affected if control qubit is in state $|1\rangle$

(b = 1)

"Weaving" a Two Qubit Gate

Only nontrivial case is when the control pair has q-spin 1.

We've reduced the problem to weaving one anyon around three others. **Still too hard for brute force approach!**

Try Weaving Around Just Two Anyons

We're back to B_3 , so this is numerically feasible.

Question: Can we find a weave which does not lead to **leakage errors**?

A Trick: Effective Braiding

The effect of weaving the **blue anyon** through the two **green anyons** has approximately the same effect as braiding the two **green anyons** twice.

Controlled-"Knot" Gate

Not a CNOT, but sufficient for universal quantum computation.

SK Improved Controlled-"Knot" Gate

Another Trick: Injection Weaving

Step 1: Inject the control pair into the target qubit.

Another Trick: Injection Weaving

Step 2: Weave the control pair inside the injected target qubit.

Another Trick: Injection Weaving

Step 3: Extract the control pair from the target using the inverse of the injection weave.

Putting it all together we have a CNOT gate:

SK Improved Controlled-NOT Gate

Universal Set of Gates

Single qubit rotations:
$$|\psi\rangle - U_{\vec{\phi}} - U_{\vec{\phi}} |\psi\rangle$$

NEB, L. Hormozi, G. Zikos, S.H. Simon, Phys. Rev. Lett. 95 140503 (2005)

Quantum Circuit

What braid corresponds to this circuit?

Quantum Circuit

Braid

Topological Quantum Computing with Only One Mobile Quasiparticle

S. H. Simon,¹ N. E. Bonesteel,² M. H. Freedman,³ N. Petrovic,¹ and L. Hormozi²

¹Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974, USA ²Department of Physics and NHMFL, Florida State University, Tallahassee, Florida 32310, USA ³Microsoft Research, One Microsoft Way, Redmond, Washington 98052, USA

We know it is possible to carry out universal quantum computation by moving only a *single* particle.

Can we find an efficient CNOT construction in which only a single particle is woven through the other particles?

Another Useful Braid: The F-Braid

F-Matrix:

$$\begin{bmatrix} \tau & \sqrt{\tau} & 0 \\ \sqrt{\tau} & -\tau & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{O}_{\mathbf{O}} \\ \mathbf{O}_{\mathbf{O}} \\ \mathbf{O}_{\mathbf{O}} \\ \mathbf{O}_{\mathbf{O}} \\ \mathbf{O}_{\mathbf{O}} \end{bmatrix} = \begin{bmatrix} \mathbf{O}_{\mathbf{O}} \\ \mathbf{O}_{\mathbf{O}} \\ \mathbf{O}_{\mathbf{O}} \\ \mathbf{O}_{\mathbf{O}} \end{bmatrix}$$

F-Braid:

Phase Braid

Single Particle Weave Gate: Part 3

Controlled-Phase Gate

SK Improved Controlled-Phase Gate

<u>and free for the second of th</u> ᡔ᠆ᢧᢞ᠋ᡐᠺᠽᡊ᠆ᡐᠾ᠆ᡐᡐᠧᡊᡊᢞ᠆ᡁᢞᡐ᠆ᡁᡆᡄᠰ᠊ᢧᡊᡊᢞᡐ᠆ᡁᡙᠵᡐᠾᢞᡐᠧᡘ᠕᠆ᡁᠣᡐ

Universal "One-Particle Weave" Gates

Single qubit rotations:
$$|\psi\rangle - U_{\vec{\phi}} - U_{\vec{\phi}} |\psi\rangle$$

L. Hormozi, G. Zikos, NEB, and S.H. Simon, Phys. Rev. B 75, 165310 (2007).

How Big is Shor's Braid?

How many elementary braids are required to factor a K-bit number N using Shor's algorithm?

Bottleneck: Modular Exponentiation requires ~ K^3 gates.

$$U_{\text{modexp}} \left| a \right\rangle_{i} \left| 0 \right\rangle_{o} = \left| a \right\rangle_{i} \left| x^{a} \left(\text{mod} N \right) \right\rangle_{o}$$

Specific requirements:

- ~ 3 *K* Qubits
- ~ 40 K^3 NOT gates
- ~ 28 K^3 CNOT gates
- ~ 92 K^3 CCNOT (Toffoli) gates

Beckman, Chari, Devabhaktuni, Preskill, PRA 54, 1034 (1996).

Quantum Gates for Modular Exp

NOT Gate:

Length (measured in elementary braids) grows logarithmically with decreasing error:

$$L_{NOT} \approx 18 \left| \log_{10} \mathcal{E} \right|$$

Roughly same scaling seen for all "three-weaves"

G. Zikos, et al., Int. J. Mod. Phys. B 23, 2727 (2009).

Quantum Gates for Modular Exp

CNOT is constructed using 3 three-weaves plus 2 single qubit rotations for a total of 5 three-weaves.

$$L_{CNOT} \approx 5L_{NOT} \approx 90 \left| \log_{10} \mathcal{E} \right|$$

Quantum Gates for Modular Exp

CCNOT can be constructed using 6 CNOTs (up to single qubit rotations on the target) and 9 single qubit rotations. So 6x3 = 18 "CNOT" three-weaves + 9 "single qubit rotation" three-weaves = 27 three-weaves.

$$L_{CCNOT} \approx 27 L_{NOT} \approx 486 \left| \log_{10} \varepsilon \right|$$

Number of Elementary Braids

Total number of elementary braids:

$$L_{Shor} \approx 50,000 | \log_{10} \mathcal{E} | K^3$$

For a finite probability that no error occurs, we require:

$$|\mathcal{E}|^2 \sim \frac{1}{50,000 K^3}$$

To factor a 128-bit number:

Number of Fibonacci anyons ≈ 1000

$$\varepsilon \sim 3 \times 10^{-6} \longrightarrow$$

Number of elementary braids $\approx 6 \times 10^{11}$

M. Baraban, NEB, and S. H. Simon, PRA 81, 062317 (2010)